פרק 1 - פתרון וחקירת מערכת משוואות ליניאריות
▼
מערכת משוואות לינאריות, מספר הפתרונות של מערכת משוואות לינאריות, מערכת משוואות לינאריות מדורגת, תהליך הדירוג/החילוץ של גאוס לפתרון מערכת משוואות לינאריות, מערכת משוואות ליניאריות הומוגנית, הקשר שבין מערכת משוואות לינאריות למערכת ההומוגנית המתאימה לה, שימושים של מערכות משוואות לינאריות.
פרק 2 - מטריצות
▼
הגדרת מטריצה, מטריצה ריבועית, מטריצת האפס, מטריצה היחידה, מטריצה משולשת עליונה, מטריצה משולשת תחתונה, מטריצה אלכסונית, מטריצה סימטרית, מטריצה אנטי-סימטרית, כפל מטריצה בסקלר, חיבור וחיסור מטריצות, כפל מטריצות, העקבה של מטריצה, המטריצה המשוחלפת, המטריצה ההופכית, דרגה של מטריצה, הצגת מערכת משוואות בעזרת כפל מטריצות, פתרון מערכת משוואות בעזרת המטריצה ההופכית, מטריצה אלמנטרית, פירוק LU, רגרסיה לינארית.
פרק 3 - דטרמיננטות
▼
הגדרת דטרמיננטה, כללי דטרמיננטות, כלל קרמר, מטריצה צמודה קלאסית, חישוב המטריצה ההופכית בעזרת דטרמיננטות, שימושי הדטרמיננטה.
פרק 4 - המרחב R^n
פרק 5 - ערכים עצמיים-וקטורים עצמיים-לכסון מטריצות - דימיון
▼
ערכים עצמיים, וקטורים עצמיים, מטריצה אופינית, פולינום אופייני, ריבוב אלגברי וריבוב גיאומטרי של ערך עצמי, מרחב עצמי, לכסון מטריצות, חזקה של מטריצה, פולינום מינימלי, משפט קיילי המילטון, דמיון מטריצות, מטריצות דומות.