פרק 1 - חזרה על חדו"א - סדרות פונקציות, טורי פונקציות וטורי חזקות
▼
סדרת פונקציות, התכנסות נקודתית של סדרת פונקציות, התכנסות במידה שווה של סדרת פונקציות, טור פונקציות, התכנסות של טור פונקציות, התכנסות במידה שווה של טור פונקציות, טורי חזקות, התכנסות של טורי חזקות, פיתוח פונקציה לטור חזקות, גזירה ואינטגרציה של טורי חזקות, גזירה ואינטגרציה איבר איבר, סכום של טור פונקציות, סכום של טור עם איברים קבועים.
פרק 2 - חזרה על מד"ר - משוואות מסדר ראשון
▼
מהי משוואה דיפרנציאלית, משוואה פרידה (משוואה הניתנת להפרדת משתנים), משוואה הומוגנית, משוואה מהצורה ax+by+c)dx+(dx+ey+f)dy=0) , משוואה מדויקת, גורם אינטגרציה, משוואה לינארית (פתרון לפי נוסחה), משוואה לינארית (פתרון לפי וריאציית פרמטרים), משוואת ברנולי, משוואת ריקטי, משוואות הנפתרות על ידי הצבות שונות ומשונות, משפט הקיום והיחידות למשוואה מסדר ראשון על שם פיאנו ופיקארד, משפט הקיום והיחידות למשוואה לינארית מסדר ראשון, שיטת האטרציות של פיקארד (שיטת הקרובים העוקבים), משפט הקיום והיחידות בגרסת ליפשיץ, משפט הקיום והיחידות המורחב, פתרון גרפי בשיטת שדה כיוונים (שדה השיפועים), פתרון נומרי בשיטת אויילר, משוואה מסדר ראשון וממעלה גבוהה.
פרק 3 - חזרה על מד"ר - משוואות ליניאריות מסדר שני
▼
משוואה חסרה - שיטת הורדת סדר המשוואה, משוואה לינארית, הומוגנית, עם מקדמים קבועים, עקרון הסופרפוזיציה, שיטת השוואת מקדמים, שיטת וריאציית הפרמטרים, משוואת אוילר, שיטת דאלמבר - שיטת הפתרון השני, נוסחת אבל, הוורונסקיאן ושימושיו, משפט הקיום והיחידות למשוואה לינארית מסדר שני, השיטה האופרטורית.
פרק 4 - מרחבי מכפלה פנימית ומרחבים נורמיים
▼
מרחבי מכפלה פנימית ומרחביים נורמיים. התכנסות נקודתית, במ"ש ובנורמה. אי-שיוויון קושי-שוורץ, תהליך גרם-שמידט. משפט פיתגורס, הטלות אורתוגונליות, מערכות אורתוגונליות אינסופיות,אי-שיוויון בסל. משפט קירוב מיטבי.
פרק 5 - טורי פורייה
▼
טורי פורייה ממשיים ומרוכבים בקטעים שונים. פונקציות זוגיות ואי זוגיות, המשכה זוגית ואי-זוגית. משפט דיריכלה (הכללה של בוחן דיני), התכנסות במידה שווה, שיוויון פרסבל, התכנסות בנורמה. הלמה של רימן לבג, גזירה ואינטגרציה של טורי פורייה, משפט הקונבולוציה.
פרק 6 - דיסטריבוציות
▼
הגדרת דיסטריבוציות, פונקציות מבחן, נגזרת דיסטריביוטיבית, גבול דיסטריביוטיבי, דיסטריבוציית דלתא ("פונקציית דלתא"), דיסטריבוציות רגולריות וסינגולרית.
פרק 7 - התמרת פורייה
▼
הגדרת התמרת פורייה, תכונות התמרת פורייה, נוסחת כיווץ והזזה, נוסחאות כפל באקספוננט ומודולציה, נוסחת המומנט, נוסחאות התמרה כפולה והתמרה הפוכה, משפט פלנשראל, משפט הקונבולוציה, שימושים של התמרת פורייה בפתרון משוואות דיפרנציאליות ואינטגרליות
פרק 8 - התמרת פורייה ב L2, משפט הדגימה של שאנון וקירוב יחידה
▼
התמרת פורייה ב L2, משפט הדגימה של שאנון, קירוב יחידה
פרק 9 - התמרת לפלס
▼
התמרת לפלס, התמרת לפלס של פונקציה מחזורית, של פונקציה מפוצלת, של פונקצית מדרגה ושל פונקצית דלתא, התמרת לפלס ההפוכה, משפט הקונוולוציה, פתרון מדר בעזרת התמרת לפלס בשילוב כל הפונקציות לעיל.
פרק 10 - משוואות דיפרנציאליות חלקיות - משוואת הגלים
▼
משוואת הגלים בקטע אינסופי (נוסחת דאלמבר), משוואת הגלים בקטע סופי (הפרדת משתנים)
פרק 11 - משוואות דיפרנציאליות חלקיות - משוואת החום
▼
משוואת החום בקטע סופי, הפרדת משתנים
פרק 12 - משוואות דיפרנציאליות חלקיות - משוואת לפלס
▼
משוואת לפלס בעיגול, משוואת לפלס במלבן
פרק 13 - שאלות מסכמות ברמת בחינה