אל תפספסו את ההצעה הכי משתלמת שלנו!!!
מנוי חופשי לכל הקורסים שלכם
בטח, ספרו לי עוד!
מכינה למחלקה למתמטיקה
מחיר הקורס: ₪249
לרכישת הקורס
כולל:
225 שעות

תלמידים יקרים! 
פרקי החזרה הכללית אינם מצויינים במפורש בסילבוס הקורס וניתנו על מנת לתרגל את הטכניקה הנדרשת כפי שמופיעה בפרקי החובה. 
פרקי החשבון הדיפרנציאלי כוללים מגוון רחב של שאלות לתרגול.
יחד עם זאת מומלץ להתמקד בגזירה ומציאת תחומי עלייה וירידה בלבד.
פרקי החשבון האינטגרלי כוללים גם הם מגוון רחב של שאלות לתרגול, אולם מומלץ להתמקד בסוגי השאלות שניתנות בכיתה. 
בהצלחה!
צוות האתר גול. 

תוכן הקורס
3 לחץ על העגלה להוספת התוכן המבוקש
  • פרק 1 - חזרה כללית - מבוא לאלגברה
    סדר פעולות חשבון עם מספרים מכוונים, הצבה בתבניות מספר, פעולות עם חזקות ושורשים, שבר פשוט, שבר עשרוני, אחוזים, חיבור וחיבור שברים, כפל וחילוק שברים, פירוקים, נוסחאות הכפל המקוצר, טרינום.

  • פרק 2 - חזרה כללית - משוואות אלגבריות
    משוואה ממעלה ראשונה, מערכת שתי משוואות בשני נעלמים ממעלה ראשונה, משוואות עם אינסוף פתרונות ואף פתרון, משוואה ריבועית (משוואה ממעלה שנייה), משוואות ממעלה שלישית ומעלות גבוהות, משוואות דו ריבועיות, משוואות עם פרמטרים, משוואות עם שורשים, משוואות עם ערך מוחלט, מערכת שתי משוואות עם שני נעלמים ממעלה שנייה.

  • פרק 3 - אי שוויונים אלגבריים
    אי שוויונים ממעלה ראשונה ושנייה, אי שוויונים ממעלה גבוהה (שלישית ויותר), אי שיוויונים עם מנה, אי שיוויונים כפולים, מערכת וגם, מערכת או, מציאת תחומי הגדרה, אי שיוויונים עם ערך מוחלט.

  • פרק 4 - חזרה כללית - גיאומטריה אנליטית - הישר
    מרחק בין נקודות, אמצע קטע, משוואת הישר, שיפוע של ישר, מציאת משוואת ישר לפי נקודה ושיפוע או שתי נקודות, שאלות מסכמות במשוואת ישר

  • פרק 5 - חזרה כללית - גיאומטריה אנליטית - המעגל
    משוואת המעגל הקנוני, משוואת מעגל כללי, נקודה בתוך מעגל, מחוץ למעגל ועל היקף מעגל, מעגל המשיק לצירים, משיק למעגל, שני מעגלים

  • פרק 6 - חזרה כללית - סדרות
    מהי סדרה ,נוסחת איבר כללי של סדרה חשבונית, נוסחת סכום של סדרה חשבונית, נוסחת איבר כללי של סדרה הנדסית, נוסחת סכום של סדרה הנדסית, סדרה בעלת מספר זוגי ואי-זוגי של איברים, סדרה הנדסית אינסופית מתכנסת, סדרות כלליות, סדרות נסיגה, סדרות מעורבות.

  • פרק 7 - סימן הסכימה (סיגמה)
    כתיבת סכום באמצעות סיגמה, חוקי הסכימה, סכומים מפורסמים.

  • פרק 8 - אינדוקציה מתמטית
    מהי אינדוקציה, תכונות התחלקות, אינדוקציות עם איבר כללי שמורכב ממספר מחוברים, אינדוקציות שבהן איברים משתנים, שאלות הוכחה עם אינדוקציות, אינדוקציות עם סדרות, אינדוקציות עם עצרת

  • פרק 9 - הבינום של ניוטון
    מושג העצרת, המקדם הבינומי, הבינום של ניוטון, חישוב איבר בבינום של ניוטון.

  • פרק 10 - חוקי החזקות והשורשים
    חוקי חזקות, חוקי שורשים, כתיבת מדעית של מספרים

  • פרק 11 - משוואות ואי-שוויונים מעריכיים
    מהי משוואה מעריכית, כיצד לפתור משוואה מעריכית, מערכת משוואות מעריכיות, אי שוויונים מעריכיים.

  • פרק 12 - חוקי הלוגריתמים, משוואות ואי-שוויונים לוגריתמים
    מהי משוואה לוגריתמית, כיצד לפתור משוואה לוגריתמית, משוואת לוגריתמיות הנפתרות ע"י הגדרת הלוגריתם, חוקי הלוגריתמים, משוואות הנפתרות ע"י שימוש בחוקי הלוגריתמים, משוואות הנפתרות ע"י הוצאת לוג משני אגפי המשוואה, מערכת משוואות לוגריתמיות, מערכת משוואות לוגריתמיות ומעריכיות, אי שוויונים לוגריתמים.

  • פרק 13 - טריגונומטריה במשולש ישר זווית
    ארבעת הפונקציות הטריגונומטריות: סינוס, קוסינוס, טנגנס וקוטנגנס. שאלות במשולשים הנפתרות ע"י שימוש בטריגונומטריה

  • פרק 14 - זהויות טריגונומטריות
    זהויות יסוד, ערכי הפונקציות הטריגונומטריות של זוויות מיוחדות, הגדרת מעגל היחידה, זהויות של מעגל היחידה הטריגונומטרי, זהויות עבור זוויות הגדולות מ-360 מעלות, זהויות של סכום והפרש זוויות, זהויות של זווית כפולה, זהויות של סכום והפרש פונקציות.

  • פרק 15 - מספרים מרוכבים
    הגדרת i, הגדרת מספר מרוכב, המספר הצמוד, חקירת משוואה ריבועית מרוכבת, מישור גאוס והצגה קוטבית (פולארית) של מספר מרוכב. פעולות חשבון בהצגה קוטבית, נוסחת דה מואבר למציאת שורשים של מספר מרוכב, סדרות עם מספרים מרוכבים.

  • פרק 16 - וקטורים גיאומטריים
    מהו וקטור, העתקת וקטורים, כפל וקטור בסקלר, חיבור וחיסור וקטורים, וקטורים מקבילים ושווים, וקטורים הפורשים מישור, מכפלה סקלרית, גודל של וקטור, כפל וקטורים.

  • פרק 17 - וקטורים אלגבריים
    מהו וקטור אלגברי, וקטור שמוצאו אינו בראשית הצירים, אמצע קטע וחלוקת קטע ביחס נתון, מכפלה סקלרית וגודל של וקטור בהצגה אלגברית, הצגה פרמטית של ישר, מצב הדדי בין ישרים במרחב, הצגה פרמטרית של מישור, משוואת מישור, מצב הדדי בין מישורים במרחב, ישר חיתוך בין שני מישורים, זווית בין שני ישרים, זווית בין ישר ומישור, זווית בין שני מישורים, מרחק בין שתי נקודות במרחב, מרחק בין נקודה לישר, מרחק בין נקודה למישור, מרחק בין ישר ומישור, מרחק בין מישורים מקבילים, מרחק בין ישרים מצטלבים.

  • פרק 18 - אלגברה ליניארית - מטריצות
    הגדרת מטריצה, מטריצה ריבועית, מטריצת האפס, מטריצה היחידה, מטריצה משולשת עליונה, מטריצה משולשת תחתונה, מטריצה אלכסונית, מטריצה סימטרית, מטריצה אנטי-סימטרית, כפל מטריצה בסקלר, חיבור וחיסור מטריצות, כפל מטריצות, העקבה של מטריצה, המטריצה המשוחלפת, המטריצה ההופכית, דרגה של מטריצה, הצגת מערכת משוואות בעזרת כפל מטריצות, פתרון מערכת משוואות בעזרת המטריצה ההופכית, מטריצה אלמנטרית, פירוק LU, רגרסיה לינארית.

  • פרק 19 - מבוא לקומבינטוריקה
    קומבינטוריקה בסיסית, N מעל K כתת קבוצה, חשיבות הסדר הפנימי, חלוקת כדורים זהים לתאים, מספר האיברים בקבוצת חזקה ומספרי קטלן.

  • פרק 20 - תורת הקבוצות
    קשרים לוגים וכמותיים, מושג הקבוצה, איבר בקבוצה ושייכות לקבוצה, שוויון בין קבוצות, קבוצה סופית ואינסופית, הקבוצה הריקה, תת-קבוצה, קבוצות מיוחדות: המספרים הטבעיים, השלמים, הרציונאלים, האי-רציונאלים והממשיים, ציר המספרים, איחוד וחיתוך של קבוצות, הפרש קבוצות, המשלים של קבוצה, דיאגרמת וון, קבוצת חזקה.

  • פרק 21 - הפונקציה הממשית - תכונות בסיסיות ופונקציות נפוצות
    מהי פונקציה, תחום הגדרה של פונקציה, תיאור גרפי של פונקציה, עליה וירידה של פונקציה, פונקציה מונוטונית, חיוביות ושליליות של פונקציה, פונקציה חסומה, פונקציה לינארית, פונקציה ריבועית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציה חזקה, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים ומתיחות של פונקציה, הפונקציות הטריגונומטריות, הפונקציות הטריגונומטריות ההפוכות, הפונקציות ההיפרבוליות, הפונקציות ההיפרבוליות ההפוכות, הצגה פרמטרית של פונקציה, הצגה פולרית של עקום.

    זמן: 3:55 שעות
  • פרק 22 - חשבון דיפרנציאלי - נגזרות ומשיקים
    נגזרות יסודיות, מציאת שיפוע משיק לגרף פונקציה, מציאת משוואת משיק לגרף פונקציה, שאלות שונות עם משיקים.

  • פרק 23 - חשבון דיפרנציאלי - חקירת פונקציות
    נקודות קיצון, חקירת פונקצית פולינום, תחום הגדרה של פונקצית מנה, תחום הגדרה של פונקצית שורש, אסימפטוטות של פונקציות מנה ושורש (אסימפטוטה אנכית ואופקית), חקירת פונקצית מנה ושורש, חקירת פונקציה עם פרמטר, פונקציה זוגית ואי-זוגית.

  • פרק 24 - חשבון דיפרנציאלי - פונקציות טריגונומטריות
    נגזרות טריגונומטריות, זוגיות של פונקציה, מחזוריות של פונקציה, שאלות עם גזירה של פונקציה, שאלות עם משיקים בפונקציות טריגונומטריות, מציאת תחום הגדרה של פונקציות טריגונומטריות, מציאת נקודות קיצון של פונקציות טריגונומטריות, אסימפטוטות עם פונקציות טריגונומטריות, חקירת פונקציה טריגונומטרית.

  • פרק 25 - חשבון דיפרנציאלי - פונקציות מעריכיות
    מהי פונקציה מעריכית, שיפוע של פונקציה מעריכית, גזירה של פונקציה מעריכית, שימושי הנגזרת של פונקציות מעריכיות, חקירת פונקציה מעריכית

  • פרק 26 - חשבון דיפרנציאלי - פונקציות לוגריתמיות
    מהי פונקציה לוגריתמית, גזירה של פונקציה לוגריתמית, שימושי הנגזרת עם פונקציות לוגריתמיות, תחום הגדרה של פונקציה לוגריתמית, חקירת פונקציה לוגריתמית.

  • פרק 27 - חשבון דיפרנציאלי - פונקציות חזקה עם מעריך רציונאלי
    נגזרת של פונקצית חזקה עם מעריך רציונאלי מהצורה m/n, שאלות עם שימושי הנגזרת של פונקצית חזקה עם מעריך רציונאלי, שיפוע לא מוגדר של פונקציה עם מעריך רציונאלי, חקירת פונקצית חזקה עם מעריך רציונאלי.

  • פרק 28 - חשבון דיפרנציאלי - בעיות קיצון
    בעיות קיצון עם מספרים, בעיות קיצון בהנדסת המישור, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת המרחב.

  • פרק 29 - חשבון אינטגרלי - הגדרות וכללים
    האינטגרל הכללי, אינטגרלים מידיים, מציאת פונקציה קדומה, האינטגרל המסוים, חישובי שטחים יסודיים, שטח מתחת לציר איקס, חישובי שטחים שבין שתי פונקציות, חישובי שטחים מורכבים, חישובי שטחים עם פרמטרים, חישובי שטחים עם פונקציה רציונאלית ועם פונקצית שורש, חישובי שטחים שבין גרף הנגזרת והצירים

  • פרק 30 - חשבון אינטגרלי - פונקציות טריגונומטריות, מעריכיות, לוגריתמיות וחזקה
    האינטגרל הכללי של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי, האינטגרל המסוים של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי.

  • פרק 31 - חשבון אינטגרלי - אינטגרלים בשיטת "הנגזרת כבר בפנים"

  • פרק 32 - חשבון אינטגרלי - אינטגרלים בשיטת ההצבה

  • פרק 33 - חשבון אינטגרלי - אינטגרלים בשיטת אינטגרציה בחלקים