פרק 1 - חזרה על נוסחאות מהתיכון - אי שוויונים אלגבריים
▼
אי שוויונים ממעלה ראשונה ושנייה, אי שוויונים ממעלה גבוהה (שלישית ויותר), אי שיוויונים עם מנה, אי שיוויונים כפולים, מערכת וגם, מערכת או, מציאת תחומי הגדרה, אי שיוויונים עם ערך מוחלט.
פרק 2 - חזרה על נוסחאות מהתיכון - חוקי הלוגריתמים, משוואות ואי-שוויונים לוגריתמים
▼
מהי משוואה לוגריתמית, כיצד לפתור משוואה לוגריתמית, משוואת לוגריתמיות הנפתרות ע"י הגדרת הלוגריתם, חוקי הלוגריתמים, משוואות הנפתרות ע"י שימוש בחוקי הלוגריתמים, משוואות הנפתרות ע"י הוצאת לוג משני אגפי המשוואה, מערכת משוואות לוגריתמיות, מערכת משוואות לוגריתמיות ומעריכיות, אי שוויונים לוגריתמים.
פרק 3 - הפונקציה הממשית ומבוא לתורת הקבוצות
▼
פונקציה - הגדרה ותכונות בסיסיות, הפונקציה הלינארית, הפונקציה הריבועית, הפונקציה המעריכית, הפונקציה הלוגריתמית, פונקציית החזקה עבור מעריכים שונים, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים מתיחות וכיווצים של פונקציה, תחום הגדרה של פונקציה, הרכבת פונקציות, הפונקציה ההפוכה, פונקציה זוגית ופונקציה אי זוגית, פונקציה מפוצלת, קשרים וכמתים לוגיים, קבוצה, איבר של קבוצה, שייכות לקבוצה,
שוויון בין קבוצות, קבוצה סופית, קבוצה אינסופית, הקבוצה הריקה, תת קבוצה.
פרק 4 - גבול של פונקציה
▼
טכניקות לחישוב גבול של פונקציה, הצבה, פירוק לגורמים, הכפלה בצמוד, שאיפה לאינסוף, פונקציה השואפת לאינסוף, כלל הסנדוויץ , הגבול של אוילר, גבול לפונקציה מפוצלת, גבול לפי הגדרה
פרק 5 - חישוב נגזרת של פונקציה
▼
כללי הגזירה, תרגול בכללי הגזירה, גזירה סתומה, כלל השרשרת, גזירה לוגריתמית, נגזרת הפונקציה ההפוכה, תרגול נוסף בכללי הגזירה.
פרק 6 - רציפות של פונקציה - משפט ערך הביניים
▼
רציפות של פונקציה, משפט ערך הביניים, שיטת החצייה.
פרק 7 - משיק, נורמל, נוסחת הקירוב הליניארי
▼
הנגזרת - משמעות גיאומטרית, מתכון לפתרון בעיות משיקים, הקירוב הלינארי.
פרק 8 - כלל לופיטל
▼
שימוש בכלל לופיטל לחישוב גבול מהורה אפס חלקי אפס, אינסוף חלקי אינסוף, אפס כפול אינסוף, אחד בחזקת אינסוף, אפס בחזקת אפס, אינסוףבחזקת אפס, אינסוף פחות אינסוף, חישוב גבול במקרה שלופיטל נכשל
פרק 9 - חקירת פונקציה
▼
תחום הגדרה, זוגיות, חיתוך עם הצירים, נקודות קיצון, משפט פרמה, תחומי עליה וירידה, נקודות פיתול, תחומי קמירות וקעירות, אסימפטוטה אנכית, אסימפטוטה אופקית, אסימפטוטה משופעת, גרף, חקירה של פולינום, פונקציה רציונלית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציית שורש, פונקציה טריגונומטרית, פונקציה טריגונומטרית הפוכה, פונקצית ערך מוחלט, פונקציה לא גזירה.
פרק 10 - בעיות מקסימום ומינימום (בעיות קיצון)
▼
בעיות קיצון עם מספרים, בעיות קיצון בהנדסת המישור, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת המרחב. הערה: בעיות קיצון הוא נושא שמופיע בבגרות 5 יחידות לימוד מתמטיקה והוא מופיע בדיוק באותו האופן גם בבחינות באקדמיה אם כי בסבירות לא גבוהה. רמת השאלות כאן מתאימה לרמת השאלות באקדמיה ולעיתים אף עולה עליה.
פרק 11 - פונקציות בשני משתנים לכלכלנים - עקומות שוות ערך ונגזרות חלקיות
פרק 12 - קיצון ואוכף לפונקציה של שני משתנים
פרק 13 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')
פרק 14 - אינטגרלים מיידיים
פרק 15 - שימושי האינטגרל המסויים (שטח-אורך קשת)
▼
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.
פרק 16 - אינטגרלים בשיטת אינטגרציה בחלקים
פרק 17 - אינטגרלים של פונקציות רציונליות
פרק 18 - פתרון וחקירת מערכת משוואות ליניאריות
▼
מערכת משוואות לינאריות, מספר הפתרונות של מערכת משוואות לינאריות, מערכת משוואות לינאריות מדורגת, תהליך הדירוג/החילוץ של גאוס לפתרון מערכת משוואות לינאריות, מערכת משוואות ליניאריות הומוגנית, הקשר שבין מערכת משוואות לינאריות למערכת ההומוגנית המתאימה לה, שימושים של מערכות משוואות לינאריות.
פרק 19 - מטריצות
▼
הגדרת מטריצה, מטריצה ריבועית, מטריצת האפס, מטריצה היחידה, מטריצה משולשת עליונה, מטריצה משולשת תחתונה, מטריצה אלכסונית, מטריצה סימטרית, מטריצה אנטי-סימטרית, כפל מטריצה בסקלר, חיבור וחיסור מטריצות, כפל מטריצות, העקבה של מטריצה, המטריצה המשוחלפת, המטריצה ההופכית, דרגה של מטריצה, הצגת מערכת משוואות בעזרת כפל מטריצות, פתרון מערכת משוואות בעזרת המטריצה ההופכית, מטריצה אלמנטרית, פירוק LU, רגרסיה לינארית.
פרק 20 - דטרמיננטות