פרק 1 - הפונקציה הממשית - תכונות בסיסיות ופונקציות נפוצות
▼
מהי פונקציה, תחום הגדרה של פונקציה, תיאור גרפי של פונקציה, עליה וירידה של פונקציה, פונקציה מונוטונית, חיוביות ושליליות של פונקציה, פונקציה חסומה, פונקציה לינארית, פונקציה ריבועית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציה חזקה, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים ומתיחות של פונקציה, הפונקציות הטריגונומטריות, הפונקציות הטריגונומטריות ההפוכות, הפונקציות ההיפרבוליות, הפונקציות ההיפרבוליות ההפוכות, הצגה פרמטרית של פונקציה, הצגה פולרית של עקום.
פרק 2 - חישוב נגזרת של פונקציה
▼
נגזרת הפונקציות היסודיות, נגזרת סכום הפרש מכפלה ומנה, נגזרת פונקציה מורכבת (כלל השרשרת), נגזרת פונקציה עם פרמטר, הנגזרת השנייה, נגזרת פונקציה בחזקת פונקציה, נגזרת פונקציה סתומה, גזירה לוגריתמית.
פרק 3 - אינטגרלים מיידיים
פרק 4 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''
פרק 5 - אינטגרלים בשיטת אינטגרציה בחלקים
פרק 6 - אינטגרלים בשיטת ההצבה
פרק 7 - אינטגרלים של פונקציות רציונליות
פרק 8 - אינטגרלים טריגונומטריים והצבות טריגונומטריות
▼
מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונומטרי על ידי הצבה, פתרון אינטגרל עם שורשים על ידי הצבה טריגונומטרית, חישוב שטחים בין פונקציות טריגונומטריות.
פרק 9 - שימושי האינטגרל המסויים (שטח-אורך קשת)
▼
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.
פרק 10 - שימושי האינטגרל המסויים (נפח-שטח מעטפת)
▼
חישוב נפח גוף סיבוב סביב ציר x וסביב ציר y בשיטת הדיסקות (קוולירי) ובשיטת הקליפות הגליליות, חישוב נפח גוף סיבוב סביב ישרים המקבילים לצירים, חישוב שטח מעטפת של גוף סיבוב סביב ציר x וסביב ציר y, חישוב נפח גוף שהוא אינו גוף סיבוב.
פרק 11 - משוואות מסדר ראשון
▼
מהי משוואה דיפרנציאלית, משוואה פרידה (משוואה הניתנת להפרדת משתנים), משוואה הומוגנית, משוואה מהצורה ax+by+c)dx+(dx+ey+f)dy=0) , משוואה מדויקת, גורם אינטגרציה, משוואה לינארית (פתרון לפי נוסחה), משוואה לינארית (פתרון לפי וריאציית פרמטרים), משוואת ברנולי, משוואת ריקטי, משוואות הנפתרות על ידי הצבות שונות ומשונות, משפט הקיום והיחידות למשוואה מסדר ראשון על שם פיאנו ופיקארד, משפט הקיום והיחידות למשוואה לינארית מסדר ראשון, שיטת האטרציות של פיקארד (שיטת הקרובים העוקבים), משפט הקיום והיחידות בגרסת ליפשיץ, משפט הקיום והיחידות המורחב, פתרון גרפי בשיטת שדה כיוונים (שדה השיפועים), פתרון נומרי בשיטת אויילר, משוואה מסדר ראשון וממעלה גבוהה.
פרק 12 - מספרים מרוכבים ופתרון משוואות פולינומיאליות
▼
הגדרת מספר מרוכב, הצמוד המרוכב, פעולות בין מספרים מרוכבים (חיבור, חיסור, כפל, חילוק), הצגת קוטבית של מספר מרוכב, הצגה מעריכית של מספר מרוכב (נוסחת אוילר), נוסחת דה-מואבר (חזקה ושורש של מספר מרוכב), פתרון משוואות מרוכבות, שימושים של מספרים מרוכבים באלגברה לינארית (פעולות בין וקטורים, מערכת משוואות, תת-מרחבים, תלות לינארית, ערכים עצמיים ווקטורים עצמיים), חילוק פולינומים, פתרון משוואות פולינומיאליות.
פרק 13 - משוואות ליניאריות מסדר שני
▼
משוואה חסרה - שיטת הורדת סדר המשוואה, משוואה לינארית, הומוגנית, עם מקדמים קבועים, עקרון הסופרפוזיציה, שיטת השוואת מקדמים, שיטת וריאציית הפרמטרים, משוואת אוילר, שיטת דאלמבר - שיטת הפתרון השני, נוסחת אבל, הוורונסקיאן ושימושיו, משפט הקיום והיחידות למשוואה לינארית מסדר שני, השיטה האופרטורית.
פרק 14 - נושאים מתקדמים - הצגה פולרית של פונקציה
▼
קואורדינטות פולריות (קוטביות), עקומים פולרים נפוצים (קו, מעגל, קרדיואידה, למינסקטה, ורד ועוד) , הנגזרת ושימושיה, חישוב שטחים, חישוב אורך קשת, חישוב שטח מעטפת של גוף סיבוב.
פרק 15 - קווים ותחומים במישור, משטחים וגופים במרחב
▼
בפרק זה נכיר את כל הקוים במישור (ישר, מעגל, אליפסה, פרבולה, היפרבולה) ואת התחומים החסומים בהם בהצגה אלגברית, פרמטרית ופולרית. בהמשך נכיר את המשטחים המפורסמים במרחב (מישור, ספירה, גליל אליפטי, חרוט אליפטי, היפרבולואיד חד יריעתי, היפרבולואיד דו יריעתי, פרבולואיד אליפטי, פרבולואיד היפרבולי) בהצגה אלגברית והצגה פרמטרית. לבסוף נתמקד בגופים במרחב בקואורדינטות קרטזיות, גליליות וכדוריות.
פרק 16 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה
▼
מציאת מקסימום ומינימום מוחלטים/גלובליים לפונקציה של שני משתנים בקבוצה סגורה וחסומה כגון משולש, טרפז, עיגול וכו
פרק 17 - אינטגרלים כפולים
▼
אינטגרלים כפולים, החלפת סדר אינטגרציה באינטגרל כפול
פרק 18 - שימושי האינטגרל הכפול
▼
חישוב שטחים בעזרת אינטגרל כפול, חישוב נפח גוף עם אינטגרל כפול, חישוב מסה של לוח דק, חישוב מרכז כובד של לוח דק, חישוב מומנט התמד של לוח דק, חישוב שטח פנים של משטח.
פרק 19 - אינטגרלים כפולים בקואורדינטות קוטביות (פולריות)
פרק 20 - החלפת משתנים באינטגרל כפול (יעקוביאן)
פרק 21 - אינטגרלים משולשים ושימושיהם
פרק 22 - אינטגרלים משולשים בקואורדינטות גליליות וכדוריות
פרק 23 - החלפת משתנים באינטגרלים משולשים (יעקוביאן)
פרק 24 - וקטורים גיאומטרים, פונקציות וקטוריות, אופרטורים וקטורים
▼
המרחב התלת ממדי, ווקטור תלת ממדי, אמצע קטע וחלוקת קטע ביחס נתון, וקטור העובר דרך שתי נקודות, גודל וכיוון של וקטור, שוויון בין וקטורים, כפל וקטור בסקלר, חיבור וחיסור וקטורים, מכפלה סקלרית של וקטורים, חישוב זוית בין וקטורים, וקטורי הצירים, נורמה של וקטור, וקטור יחידה, נרמול של וקטור, מרחק בין וקטורים, מכפלה וקטורית ושימושיה (נורמל לוקטורים נתונים, שטח מקבילית, שטח משולש, משוואת מישור, מרחק נקודה מישר, מרחק בין ישרים מקבילים ובין ישרים מצטלבים), מכפלה מעורבת ושימושיה (המצאות וקטורים על אותו מישור, נפח מקבילון ונפח פירמידה), הצגה פרמטרית של עקום במישור, הצגה פרמטרית של עקום במרחב, פונקציה וקטורית של משתנה ממשי, וקטור משיק וישר משיק לפונקציה וקטורית, גבול, רציפות, נגזרת ואינטגרל של פונקציה וקטורית, פונקציה וקטורית חלקה, משיק יחידה, נורמל יחידה ובינורמל, המישור הניצב, מישור היישור ומישור הנישוק, מהירות ותאוצה של חלקיק, עקמומיות, רדיוס עקמומיות, מעגל עקמומיות, שדה וקטורי, האופרטורים דל ולפלסיאן, הגרדיאנט של פונקציה, הדיברגנץ של שדה וקטורי, הרוטור (קרל) של שדה וקטורי, קואורדינטות קרטזיות גליליות וכדוריות, אלמנטים דיפרנציאלים - אורך, שטח ונפח, הדיברגנץ בקואורדינטות גליליות וכדוריות, המשמעות הפיזיקלית של הדיברגנץ, הרוטור בקואורדינטות גליליות וכדוריות.
פרק 25 - נגזרות חלקיות דיפרנציאבליות
▼
נגזרות חלקיות מסדר ראשון, נגזרות חלקיות מסדר שני, נגזרות חלקיות לפי ההגדרה, דיפרנציאביליות
פרק 26 - נגזרת מכוונת וגרדיאנט
▼
גרדינט, נגזרת מכוונת, משמעות גיאומטרית של נגזרת מכוונת וגרדינט, משפטים הקשורים לנגזרת מכוונת וגרדינט, נגזרת מכוונת לפי ההגדרה, ישר פרמטרי משיק למשטח.