פרק 1 - משוואות דיפרנציאליות חלקיות מסדר ראשון
▼
שיטת הקווים האופייניים, שיטת לגראנג (אינטגרלים ראשונים)
פרק 2 - מיון משוואות דיפרנציאליות חלקיות מסדר שני
▼
משוואות היפרבוליות, משוואות פרבוליות, משוואות אליפטיות
פרק 3 - מרחבי מכפלה פנימית ומרחבים נורמיים
▼
מרחבי מכפלה פנימית ומרחבים נורמיים
פרק 4 - חזרה על טורי פורייה
▼
טורי פורייה ממשיים ומרוכבים בקטעים שונים. פונקציות זוגיות ואי זוגיות, המשכה זוגית ואי-זוגית. משפט דיריכלה, התכנסות במידה שווה, שיוויון פרסבל, התכנסות בנורמה. הלמה של רימן לבג, גזירה ואינטגרציה של טורי פורייה, משפט הקונבולוציה.
פרק 5 - בעיות שטורם ליוביל
▼
בעיות שטורם ליוביל, טור קוסינוסים וסינוסים
פרק 6 - משוואת הגלים
▼
משוואת הגלים בקטע אינסופי (נוסחת דאלמבר), משוואת הגלים בקטע סופי (הפרדת משתנים)
פרק 7 - משוואת החום
▼
משוואת החום בקטע סופי, הפרדת משתנים
פרק 8 - אינטגרל אנרגיה
פרק 9 - משוואת לפלס
▼
משוואת לפלס בעיגול, משוואת לפלס במלבן
פרק 10 - התמרת פורייה
▼
הגדרת התמרת פורייה, תכונות התמרת פורייה, נוסחת כיווץ והזזה, נוסחאות כפל באקספוננט ומודולציה, נוסחת המומנט, נוסחאות התמרה כפולה והתמרה הפוכה, משפט פלנשראל, משפט הקונבולוציה, שימושים של התמרת פורייה בפתרון משוואות דיפרנציאליות ואינטגרליות