אל תפספסו את ההצעה הכי משתלמת שלנו!!!
מנוי חופשי לכל הקורסים שלכם
בטח, ספרו לי עוד!
חדוא לתלמידי כלכלה וניהול
מחיר הקורס: ₪249
לרכישת הקורס
כולל:
92 שעות
תוכן הקורס
2 לחץ על העגלה להוספת התוכן המבוקש
  • פרק 1 - הפונקציה הממשית ומבוא לתורת הקבוצות
    פונקציה - הגדרה ותכונות בסיסיות, הפונקציה הלינארית, הפונקציה הריבועית, הפונקציה המעריכית, הפונקציה הלוגריתמית, פונקציית החזקה עבור מעריכים שונים, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים מתיחות וכיווצים של פונקציה, תחום הגדרה של פונקציה, הרכבת פונקציות, הפונקציה ההפוכה, פונקציה זוגית ופונקציה אי זוגית, פונקציה מפוצלת, קשרים וכמתים לוגיים, קבוצה, איבר של קבוצה, שייכות לקבוצה,
    שוויון בין קבוצות, קבוצה סופית, קבוצה אינסופית, הקבוצה הריקה, תת קבוצה.

  • פרק 2 - גבול של פונקציה
    הצבה, צמצום, הכפלה בצמוד, פונקציה שואפת לאינסוף,
    איקס שואף לאינסוף, הגבול של אוילר, כלל הסנדוויץ, גבול של פונקציה מפוצלת, גבול לפי הגדרה.

  • פרק 3 - רציפות של פונקציה - משפט ערך הביניים
    רציפות של פונקציה, משפט ערך הביניים, שיטת החצייה.

  • פרק 4 - הגדרת הנגזרת - גזירות של פונקציה - נגזרות חד-צדדיות
    הגדרת הנגזרת, גזירות של פונקציה, נגזרות חד-צדדיות,

  • פרק 5 - חישוב נגזרת של פונקציה
    כללי הגזירה, תרגול בכללי הגזירה, גזירה סתומה, כלל השרשרת, גזירה לוגריתמית, נגזרת הפונקציה ההפוכה, תרגול נוסף בכללי הגזירה.

  • פרק 6 - משיק, נורמל, נוסחת הקירוב הליניארי
    הנגזרת - משמעות גיאומטרית, מתכון לפתרון בעיות משיקים, הקירוב הלינארי.

  • פרק 7 - כלל לופיטל
    גבול מהצורה אפס חלקי אפס ואינסוף חלקי אינסוף, גבול מהצורה אפס כפול אינסוף, גבול מהצורה אינסוף פחות אינסוף, גבול מהצורה אחד בחזקת אינסוף, מקרים בהם כלל לופיטל נכשל.

  • פרק 8 - חקירת פונקציה
    מושגי יסוד, חקירת פולינום, חקירת פונקציה רציונלית, חקירת פונקציה מעריכית, חקירת פונקציה לוגריתמית, חקירת פונקציה עם שורשים, חקירת פונקציה לא גזירה - שורש וערך מוחלט.

  • פרק 9 - חקירת פונקציה ("שאלות מסביב")
    חקירת פונקציה - שאלות מסביב, הוכחת אי שוויונים

  • פרק 10 - מינימום ומקסימום מוחלטים לפונקציה
    מציאת מינימום ומקסימום מוחלטים לפונקציה, הוכחת אי שוויונים

  • פרק 11 - בעיות מקסימום ומינימום (בעיות קיצון)
    בעיות קיצון כלכליות מסוג ראשון, בעיות קיצון כלכליות מסוג שני, בעיות קיצון יסודיות עם מספרים, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת המישור




  • פרק 12 - מציאת מספר הפתרונות של משוואה (משפטי קושי ורול)
    מציאת מספר הפתרונות של משוואה, משפט רול

  • פרק 13 - משפט לגראנז'
    הוכחת אי שויונים בקטע [a,b], הוכחת אי שויונים בקטע [o,x], הוכחת אי שוויונים עם מספרים, שאלות כלליות



  • פרק 14 - גמישות הביקוש

  • פרק 15 - אינטגרלים מיידיים ואינטגרלים בשיטת "הנגזרת כבר בפנים"
    האינטגרל הלא מסויים - מבוא, כללי אינטגרציה, אינטגרלים בשיטת "הנגזרת כבר בפנים", מציאת פונקציה קדומה,

  • פרק 16 - אינטגרלים בשיטת אינטגרציה בחלקים
    אינטגרלים בשיטת אינטגרציה בחלקים

  • פרק 17 - אינטגרלים בשיטת ההצבה
    אינטגרלים בשיטת ההצבה

  • פרק 18 - אינטגרלים של פונקציות רציונליות
    אינטגרלים של פונקציה רציונלית, חילוק פולינומים ואינטגרלים של פונקציה רציונלית, אינטגרלים שמשלבים הצבה ופונקציה רציונלית


  • פרק 19 - האינטגרל המסוים, סכומי רימן
    האינטגרל המסוים, אי שוויונים עם אינטגרלים, סכומי רימן


  • פרק 20 - שימושי האינטגרל המסויים (שטח-אורך קשת)
    חישוב שטח הכלוא בין גרף פונקציה וציר ה-x, חישוב שטח כאשר הפונקציה מתחת לציר ה-x, חישוב שטח הכלוא בין שתי פונקציות, חישוב שטחים מורכבים, חישוב שטחים ביחס לציר ה-y, אורך קשת

  • פרק 21 - שימושי האינטגרל המסוים - נפח גוף סיבוב
    כיצד לחשב נפח גוף סיבוב, חישוב שטח גוף סיבוב הנוצר בין שתי פונקציות

  • פרק 22 - המשפט היסודי של החדו"א (גזירת האינטגרל)
    המשפט היסודי של החדו"א

  • פרק 23 - אינטגרלים לא אמיתיים
    אינטגרל לא אמיתי מסוג ראשון, אינטגרל לא אמיתי מסוג שני, אינטגרל לא אמיתי מסוג שלישי, שימושים של אינטגרלים לא אמיתיים, מבחן ההשוואה להתכנסות, מבחן ההשוואה להתבדרות, מבחן ההשוואה הגבולי לאינטגרל מסוג ראשון, מבחן ההשוואה הגבולי לאינטגרל מסוג שני

  • פרק 24 - פונקציות של שני משתנים
    פונקציה של שני משתנים, קווי גובה (נקראים גם קווי/עקומות רמה או קווי/עקומות אדישות או עקומות שוות ערך), משטחים מפורסמים (מישור, שפת כדור, אליפסואיד, גליל אליפטי, חרוט אליפטי, היפרבולואיד, פרבולואיד).

  • פרק 25 - גבולות ורציפות של פונקציה של שני משתנים

  • פרק 26 - נגזרות חלקיות

  • פרק 27 - כלל השרשרת בפונקציות של מספר משתנים

  • פרק 28 - פונקציות סתומות

  • פרק 29 - קיצון ואוכף לפונקציה של שני משתנים

  • פרק 30 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')

  • פרק 31 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה

  • פרק 32 - פונקציות הומוגניות-משפט אוילר

  • פרק 33 - סדרות
    מהי סדרה, דוגמאות לסדרות, הגדרת סדרה באמצעות פונקציה, גבול של סדרה, סדרה עולה וסדרה יורדת, סדרה חסומה, חסם מלעיל, חסם מלרע, חסם עליון (סופרימום) וחסם תחתון (אינפימום), חישוב גבול לפי כללי חשבון גבולות, חישוב גבול לפי אוילר, חישוב גבול לפי כלל הסנדוויץ, חישוב גבול לפי מבחן המנה ומבחן השורש,
    חישוב גבול של סדרה רקורסיבית, חישוב גבול לפי ההגדרה

  • פרק 34 - טורים עם איברים קבועים
    טורים מתכנסים וטורים מתבדרים, מבחני התכנסות לטורים, התכנסות בהחלט והתכנסות בתנאי, תרגילי תיאוריה,



  • פרק 35 - הוכחות של משפטים נבחרים
    גזירות גוררת רציפות, כלל השרשרת, כלל לופיטל, משפט לגרנז, משפט פרמה, משפט רול, נגזרת הפונקציה ההפוכה

  • פרק 36 - אינטגרלים כפולים

  • פרק 37 - עקומת לורנץ ומדד ג'יני