אל תפספסו את ההצעה הכי משתלמת שלנו!!!
מנוי חופשי לכל הקורסים שלכם
בטח, ספרו לי עוד!
הכנה במתמטיקה 93053
מחיר הקורס: ₪249
לרכישת הקורס
כולל:
306 שעות
תוכן הקורס
3 לחץ על העגלה להוספת התוכן המבוקש
  • פרק 1 - מבוא לאלגברה
    סדר פעולות חשבון עם מספרים מכוונים, הצבה בתבניות מספר, פעולות עם חזקות ושורשים, שבר פשוט, שבר עשרוני, אחוזים, חיבור וחיבור שברים, כפל וחילוק שברים, פירוקים, נוסחאות הכפל המקוצר, טרינום.

  • פרק 2 - מבוא לתורת הקבוצות
    קשרים לוגים וכמותיים, מושג הקבוצה, איבר בקבוצה ושייכות לקבוצה, שוויון בין קבוצות, קבוצה סופית ואינסופית, הקבוצה הריקה, תת-קבוצה, קבוצות מיוחדות: המספרים הטבעיים, השלמים, הרציונאלים, האי-רציונאלים והממשיים, ציר המספרים, איחוד וחיתוך של קבוצות, הפרש קבוצות, המשלים של קבוצה, דיאגרמת וון, קבוצת חזקה.

  • פרק 3 - משוואות אלגבריות
    משוואה ממעלה ראשונה, מערכת שתי משוואות בשני נעלמים ממעלה ראשונה, משוואות עם אינסוף פתרונות ואף פתרון, משוואה ריבועית (משוואה ממעלה שנייה), משוואות ממעלה שלישית ומעלות גבוהות, משוואות דו ריבועיות, משוואות עם פרמטרים, משוואות עם שורשים, משוואות עם ערך מוחלט, מערכת שתי משוואות עם שני נעלמים ממעלה שנייה.

  • פרק 4 - אי שוויונים אלגבריים
    אי שוויונים ממעלה ראשונה ושנייה, אי שוויונים ממעלה גבוהה (שלישית ויותר), אי שיוויונים עם מנה, אי שיוויונים כפולים, מערכת וגם, מערכת או, מציאת תחומי הגדרה, אי שיוויונים עם ערך מוחלט.

  • פרק 5 - חקירת משוואה ממעלה ראשונה

  • פרק 6 - חקירת משוואה ממעלה שנייה

  • פרק 7 - נוסחאות וייטה
    נוסחאות וייטה, סימני שורשים של משוואה ריבועית, חקירת משוואה ריבועית עם נוסחאות וייטה, חקירת פונקציה ריבועית עם נוסחאות וייטה.

  • פרק 8 - חוקי החזקות והשורשים
    חוקי חזקות, חוקי שורשים, כתיבת מדעית של מספרים

  • פרק 9 - משוואות ואי-שוויונים מעריכיים
    מהי משוואה מעריכית, כיצד לפתור משוואה מעריכית, מערכת משוואות מעריכיות, אי שוויונים מעריכיים.

  • פרק 10 - חוקי הלוגריתמים, משוואות ואי-שוויונים לוגריתמים
    מהי משוואה לוגריתמית, כיצד לפתור משוואה לוגריתמית, משוואת לוגריתמיות הנפתרות ע"י הגדרת הלוגריתם, חוקי הלוגריתמים, משוואות הנפתרות ע"י שימוש בחוקי הלוגריתמים, משוואות הנפתרות ע"י הוצאת לוג משני אגפי המשוואה, מערכת משוואות לוגריתמיות, מערכת משוואות לוגריתמיות ומעריכיות, אי שוויונים לוגריתמים.

  • פרק 11 - סדרות
    מהי סדרה ,נוסחת איבר כללי של סדרה חשבונית, נוסחת סכום של סדרה חשבונית, נוסחת איבר כללי של סדרה הנדסית, נוסחת סכום של סדרה הנדסית, סדרה בעלת מספר זוגי ואי-זוגי של איברים, סדרה הנדסית אינסופית מתכנסת, סדרות כלליות, סדרות נסיגה, סדרות מעורבות.

  • פרק 12 - סימן הסכימה (סיגמה)
    כתיבת סכום באמצעות סיגמה, חוקי הסכימה, סכומים מפורסמים.

  • פרק 13 - אינדוקציה מתמטית
    מהי אינדוקציה, תכונות התחלקות, אינדוקציות עם איבר כללי שמורכב ממספר מחוברים, אינדוקציות שבהן איברים משתנים, שאלות הוכחה עם אינדוקציות, אינדוקציות עם סדרות, אינדוקציות עם עצרת

  • פרק 14 - הבינום של ניוטון
    מושג העצרת, המקדם הבינומי, הבינום של ניוטון, חישוב איבר בבינום של ניוטון.

  • פרק 15 - קומבינטוריקה

  • פרק 16 - כלל ההכלה וההפרדה

  • פרק 17 - גיאומטריה אנליטית - נקודה וישר
    מרחק בין נקודות, אמצע קטע, משוואת הישר, שיפוע של ישר, מציאת משוואת ישר לפי נקודה ושיפוע או שתי נקודות, חלוקת קטע ביחס נתון, מרחק בין ישרים, מרחק בין נקודה וישר.

  • פרק 18 - גיאומטריה אנליטית - המעגל
    משוואת המעגל, נקודה בתוך מעגל, מחוץ למעגל ועל היקף מעגל, מעגל המשיק לצירים, משיק למעגל, שני מעגלים

  • פרק 19 - טריגונומטריה במשולש ישר זווית
    ארבעת הפונקציות הטריגונומטריות: סינוס, קוסינוס, טנגנס וקוטנגנס. שאלות במשולשים הנפתרות ע"י שימוש בטריגונומטריה

  • פרק 20 - זהויות טריגונומטריות
    זהויות יסוד, ערכי הפונקציות הטריגונומטריות של זוויות מיוחדות, הגדרת מעגל היחידה, זהויות של מעגל היחידה הטריגונומטרי, זהויות עבור זוויות הגדולות מ-360 מעלות, זהויות של סכום והפרש זוויות, זהויות של זווית כפולה, זהויות של סכום והפרש פונקציות.

  • פרק 21 - משוואות טריגונומטריות
    מהי משוואה טריגונומטרית, צורת פתרון של סינוס, של קוסינוס ושל טנגנס, פתרונות כלליים של משוואות טריגונומטריות, משוואות הנפתרות ע"י שימוש בזהויות יסוד, משוואות הנפתרות ע"י חלוקה בקוסינוס, משוואות הנפתרות ע"י טכניקה אלגברית, משוואות עם פתרון בתחום נתון, משוואות עם זוויות ברדיאנים.

  • פרק 22 - טריגונומטריה במישור
    משפט הסינוסים, משפט הקוסינוסים, שטח משולש לפי שתי צלעות וסינוס הזווית שבניהן, שטח משולש לפי צלע ושתי זוויות סמוכות.

  • פרק 23 - וקטורים גיאומטריים
    מהו וקטור, העתקת וקטורים, כפל וקטור בסקלר, חיבור וחיסור וקטורים, וקטורים מקבילים ושווים, וקטורים הפורשים מישור, מכפלה סקלרית, גודל של וקטור, כפל וקטורים.

  • פרק 24 - וקטורים אלגבריים
    מהו וקטור אלגברי, וקטור שמוצאו אינו בראשית הצירים, אמצע קטע וחלוקת קטע ביחס נתון, מכפלה סקלרית וגודל של וקטור בהצגה אלגברית, הצגה פרמטית של ישר, מצב הדדי בין ישרים במרחב, הצגה פרמטרית של מישור, משוואת מישור, מצב הדדי בין מישורים במרחב, ישר חיתוך בין שני מישורים, זווית בין שני ישרים, זווית בין ישר ומישור, זווית בין שני מישורים, מרחק בין שתי נקודות במרחב, מרחק בין נקודה לישר, מרחק בין נקודה למישור, מרחק בין ישר ומישור, מרחק בין מישורים מקבילים, מרחק בין ישרים מצטלבים.

  • פרק 25 - חשבון דיפרנציאלי - מבוא מתמטי כללי
    קשרים וכמתים לוגיים, קבוצה, איבר של קבוצה, שייכות לקבוצה, שוויון בין קבוצות, קבוצה סופית, קבוצה אינסופית, הקבוצה הריקה, תת קבוצה, מספרים טבעיים, מספרים שלמים, מספרים רציונליים, מספרים אי רציונליים, מספרים ממשיים, ציר המספרים, קטעים על ציר המספרים, איחוד וחיתוך קבוצות, הפרש קבוצות, המשלים של קבוצה, סביבה של נקודה, נקודה פנימית, נקודה חיצונית, נקודת שפה, המשפט היסודי של האריתמטיקה, קבוצות חסומות וקבוצות לא חסומות, חסם תחתון (אינפימום) של קבוצה, חסם עליון (סופרמום) של קבוצה , מינימום ומקסימום של קבוצה, אקסיומת השלמות (אקסיומת החסם העליון), משפט ארכימדס, תכונת ארכימדס, קיום ויחידות הערך השלם, צפיפות (של הממשיים, הרציונליים והאי-רציונליים), סימן הסכימה, סכומים מפורסמים, אינדוקציה, אי שוויונים מפורסמים, פתרון אי-שוויונים, עצרת, המקדם הבינומי, הבינום של ניוטון, משולש פסקל, שדה, שדה שלם.

  • פרק 26 - חשבון דיפרנציאלי - הפונקציה הממשית (תכונות בסיסיות ופונקציות נפוצות)
    מהי פונקציה, תחום הגדרה של פונקציה, תיאור גרפי של פונקציה, עליה וירידה של פונקציה, פונקציה מונוטונית, חיוביות ושליליות של פונקציה, פונקציה חסומה, פונקציה לינארית, פונקציה ריבועית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציה חזקה, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים ומתיחות של פונקציה, הפונקציות הטריגונומטריות, הפונקציות הטריגונומטריות ההפוכות, הפונקציות ההיפרבוליות, הפונקציות ההיפרבוליות ההפוכות, הצגה פרמטרית של פונקציה, הצגה פולרית של עקום.

    זמן: 5:08 שעות
  • פרק 27 - חשבון דיפרנציאלי - הפונקציה הממשית (תכונות מתקדמות)
    תחום הגדרה של פונקציה, הרכבת פונקציות, פונקציה חד- חד ערכית, הפונקציה ההפוכה, תמונה של פונקציה, טווח של פונקציה, פונקציה על, פונקציה זוגית ופונקציה אי-זוגית, פונקציה מחזורית, פונקציה מפוצלת/תפר/מוטלאת, פונקציה אלמנטרית.

  • פרק 28 - חשבון דיפרנציאלי - נגזרות ומשיקים
    נגזרות יסודיות, מציאת שיפוע משיק לגרף פונקציה, מציאת משוואת משיק לגרף פונקציה, שאלות שונות עם משיקים.

  • פרק 29 - חשבון דיפרנציאלי - חקירת פונקצית פולינום
    פונקציה זוגית ואי-זוגית, הקשר שבין גרף הפונקציה לגרף הנגזרת, חקירת פונקצית פולינום.

  • פרק 30 - חשבון דיפרנציאלי - חקירת פונקצית מנה ושורש
    שאלות עם משיקים לפונקציות מנה ושורש, תחום הגדרה של פונקצית מנה ושורש, נקודות קיצון ותחומי עלייה וירידה של פונקצית מנה ושורש, אסימפטוטות של פונקצית מנה ושורש, נקודות פיתול ותחומי קמירות וקעירות של פונקצית מנה ושורש, חקירת פונקצית מנה ושורש, חקירת פונקציה עם פרמטר.

  • פרק 31 - חשבון דיפרנציאלי - חקירת פונקציות טריגונומטריות
    נגזרות טריגונומטריות, זוגיות של פונקציה, מחזוריות של פונקציה, שאלות עם גזירה של פונקציה, שאלות עם משיקים בפונקציות טריגונומטריות, מציאת תחום הגדרה של פונקציות טריגונומטריות, מציאת נקודות קיצון של פונקציות טריגונומטריות, אסימפטוטות עם פונקציות טריגונומטריות, נקודות פיתול ותחומי קמירות וקעירות של פונקציות טריגונומטריות, חקירת פונקציה טריגונומטרית.

  • פרק 32 - חשבון דיפרנציאלי - פונקציות מעריכיות
    שאלות עם נגזרות מעריכיות, תחום הגדרה של פונקציה מעריכיות, שימושי הנגזרת עם פונקציות מעריכיות, חקירת פונקציה מעריכיות.

  • פרק 33 - חשבון דיפרנציאלי - פונקציות לוגריתמיות
    שאלות עם נגזרות לוגריתמיות, תחום הגדרה של פונקציה לוגריתמית, שימושי הנגזרת עם פונקציות לוגריתמיות, חקירת פונקציה לוגריתמית.

  • פרק 34 - חשבון דיפרנציאלי - פונקצית חזקה עם מעריך רציונאלי
    שאלות עם נגזרות של פונקצית חזקה עם מעריך רציונאלי, תחום הגדרה של של פונקצית חזקה עם מעריך רציונאלי, שימושי הנגזרת עם של פונקצית חזקה עם מעריך רציונאלי, חקירת של פונקצית חזקה עם מעריך רציונאלי.

  • פרק 35 - חשבון דיפרנציאלי - חילוק פולינומים ופתרון משוואות פולינומיאליות
    מעלה של פולינום, פולינום מחלק ופולינום מחולק, חילוק פולינומים, שארית חלוקה של פולינום בפולינום, פתרון משוואות פולינומיאליות, משפטים בפתרון משוואות פולינומיאליות.

  • פרק 36 - חשבון אינטגרלי - האינטגרל הכללי
    האינטגרל הכללי, אינטגרלים מידיים, מציאת פונקציה קדומה.

  • פרק 37 - חשבון אינטגרלי - האינטגרל המסוים וחישובי שטחים
    האינטגרל המסוים, חישובי שטחים יסודיים, שטח מתחת לציר איקס, חישובי שטחים בין שתי פונקציות, חישובי שטחים מורכבים, חישובי שטחים עם פרמטרים, חישובי שטחים כאשר נתונה הנגזרת, חישובי שטחים עם פונקציה רציונאלית, עם פונקצית שורש ועם פונקציות טריגונומטריות, חישובי שטחים שבין גרף הנגזרת והצירים

  • פרק 38 - חשבון אינטגרלי - פונקציה מעריכית, לוגריתמית וחזקה
    האינטגרל הכללי של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי, האינטגרל המסוים של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי.