
1.

2.

3.

Dependency Injection with Hilt

Download the full App Created in this Guide:
https://drive.google.com/file/d/1C2mejEMsaIzfdJZ8BtF3WTCUv7SCKFLj/view?
usp=sharing

A dependency is an object that another object requires. In other words, the
latter object depends on the former for it to function. For example, a Car class
might need a reference to an Engine class.

There are three ways for a class to get an object it needs:
The class constructs the dependency it needs. In the example above,
Car would create and initialize its own instance of Engine.
Grab it from somewhere else. Some Android APIs, such as Context
getters and getSystemService(), work this way.
Have it supplied as a parameter. The app can provide these
dependencies when the class is constructed or pass them in to the
functions that need each dependency. In the example above, the Car
constructor would receive Engine as a parameter - this dependency
injection! With this approach you take the dependencies of a class
and provide them rather than having the class instance obtain them
herself.

Dependency Injection is whereby dependencies are provided to a class
instead of the class having to create them itself. Hilt is a standardized way
of enforcing dependency injection in an Android application.

In the first two options Car and Engine are tightly coupled - an instance of Car
uses one type of Engine, and no subclasses or alternative implementations
can easily be used. If the Car were to construct its own Engine, you would
have to create two types of Car instead of just reusing the same Car for engines
of type Gas and Electric. It also makes the tests much harder because Car
must have a real instance of engine thus preventing us from the ability to
mock it.

Without dependency injection:

With dependency injection

Write these classes in a new android studio project.

Lets look at the Reusability of Car:
You can pass in different implementations of Engine to Car. For example, you
might define a new subclass of Engine called ElectricEngine that you want Car
to use. If you use DI, all you need to do is pass in an instance of the updated
ElectricEngine subclass, and Car still works without any further changes.

●
There are two major ways to do dependency injection in Android:

Constructor Injection. This is the way described above. You pass the
dependencies of a class to its constructor.

● Field Injection (or Setter Injection). Certain Android framework
classes such as activities and fragments are instantiated by the
system, so constructor injection is not possible. With field injection,
dependencies are instantiated after the class is created. The code
would look like this:

●

●

In all the examples above we did the dependency injection manually

Automated dependency injection
In the previous example, you created, provided, and managed the
dependencies of the different classes yourself, without relying on a library. This
is called dependency injection by hand, or manual dependency injection. In
the Car example, there was only one dependency, but more dependencies and
classes can make manual injection of dependencies more tedious. Also When
you're not able to construct dependencies before passing them in — for
example when using lazy initializations — you need to write and maintain a
custom container (or graph of dependencies) that manages the lifetimes of
your dependencies in memory.

Look at this example to see fully manual dependency injection
https://developer.android.com/training/dependency-injection/manual

There are libraries that solve this problem by automating the process of
creating and providing dependencies. They fit into two categories:

Reflection-based solutions that connect dependencies at runtime.
Example of this solution is using the Guice library.
Static solutions that generate the code to connect dependencies at
compile time. Example is using Dagger2 library which is now managed
by Google and a jetpack composed library called Hilt.

Dagger is a popular dependency injection library for Java, Kotlin, and Android
that is maintained by Google. Dagger facilitates using DI in your app by creating
and managing the graph of dependencies for you. It provides fully static and

compile-time dependencies

Use Hilt in your Android app
Hilt is Jetpack's recommended library for dependency injection in Android. Hilt
defines a standard way to do DI in your application by providing containers for
every Android class in your project and managing their lifecycles
automatically for you.

Hilt is built on top of the popular DI library Dagger to benefit from the compile
time correctness, runtime performance, scalability, and Android Studio support
that Dagger provides.

Using Hilt

First, add the hilt-android-gradle-plugin plugin to your project's root
build.gradle file:

 dependencies {
 ...
 classpath 'com.google.dagger:hilt-android-gradle-plugin:2.38.1'
 }

Then, apply the Gradle plugin and add these dependencies in your app/
build.gradle file:
id 'kotlin-kapt'
id 'dagger.hilt.android.plugin'

dependencies {
 implementation "com.google.dagger:hilt-android:2.38.1"
 kapt "com.google.dagger:hilt-compiler:2.38.1"
}

Make sure Java 8 is enabled (Hilt uses Java 8) - in you app Gradle file

First step
Extend the Application class and annotate it with @HiltAndroidApp this
triggers Hilt's code generation, including a base class for your application that
serves as the application-level dependency container.

●

●

●

●

●

●

●

Don’t forget to add the application name to the manifest file

This generated Hilt component is attached to the Application object's lifecycle
and provides dependencies to it. Additionally, it is the parent component of the
app, which means that other components can access the dependencies that it
provides.

Once Hilt is set up in your Application class and an application-level component
is available, Hilt can provide dependencies to other Android classes that have
the @AndroidEntryPoint annotation:

Hilt currently supports the following Android classes:
Application (by using @HiltAndroidApp)
ViewModel (by using @HiltViewModel)
Activity
Fragment
View
Service
BroadcastReceiver

If you annotate an Android class with @AndroidEntryPoint, then you also must
annotate Android classes that depend on it. For example, if you annotate a
fragment, then you must also annotate any activities where you use that
fragment. Classes that Hilt injects can have other base classes that also use
injection. Those classes don't need the @AndroidEntryPoint annotation if
they're abstract.

@AndroidEntryPoint generates an individual Hilt component for each
Android class in your project. It turn them into dependency containers.

Define Hilt bindings
To perform field injection, Hilt needs to know how to provide instances of the
necessary dependencies from the corresponding component. An Hilt binding
contains the information necessary to provide instances of a type as a
dependency.

One way to provide binding information to Hilt is constructor injection. Use the
@Inject annotation on the constructor of a class to tell Hilt how to provide
instances of that class.

Our full code will look like this now:

Here @Inject gives Hilt access to the the necessary constructors meaning
it can generate instances of both Car and Engine. If Engine is a parameter
of the Injected constructor then Hilt must also know how to create
instances of it (the Engine class).

Instances that Hilt knows how to create go by the name bindings. So Car
and Engine are bindings.

And the Activity which is holding the Injectable Fields will eventually look like
this:

To obtain dependencies from a component, use the @Inject annotation to
perform field injection.
Here the @Inject annotation goes by a different meaning. Here it means the car
field is injectable field. Injectable means that Hilt can supply the instantiated
dependencies to it.
Please note that Fields injected by Hilt cannot be private. Attempting to inject a
private field with Hilt results in a compilation error.

Hilt modules
Sometimes a type cannot be constructor-injected. This can happen for multiple
reasons. For example, you cannot constructor-inject an interface. You also
cannot constructor-inject a type that you do not own, such as a class from an
external library. In these cases, you can provide Hilt with binding information by
using Hilt modules.

A Hilt module is a class that is annotated with @Module it informs Hilt how to
provide instances of certain types. you must annotate Hilt modules with
@InstallIn to tell Hilt which Android class each module will be used or installed
in. This determine the dependency lifetime scope.

If you want the dependency to exist in all of your app activities use
@InstallIn(ActivityComponent::class). Later we will see all the available
scopes.

Hilt can’t generate a constructor for an interface. Instead, provide Hilt with the
binding information by creating an abstract function annotated with @Binds
inside a Hilt module.

●

●

The @Binds annotation tells Hilt which implementation to use when it needs to
provide an instance of an interface.
The annotated function provides the following information to Hilt:

The function return type tells Hilt what interface the function provides
instances of.
The function parameter tells Hilt which implementation to provide.

Therefor our code will look like this:

In our example when someone requires a Recyclable then we will return an
Engine

And in the Main Activity we change the code like that:

Now what happens if we want different implementation for car and for engine. If
we try to add the following function to out Module and run your code.

And of course make car also implement the Recyclable interface

We will get the following error when we try to execute our code:

Hilt doesn’t know which implementation to use and We need to differentiate
them somehow.
This is why we have the @Qualifier Annotation

Create the following Annotation Quailifiers next to you Module they will use you
to differentiate the implementations

And add the Qualifier next to the implementations like this:

Also add them next to the reference definition in you MainActivity file

Interfaces are not the only case where you cannot constructor-inject a type.
Constructor injection is also not possible if you don't own the class because it
comes from an external library (classes like Retrofit or Room databases), or if
instances must be created with the builder pattern.

We can tell Hilt how to provide instances of a type by creating a function inside
a Hilt module and annotating that function with @Provides.

Lets take for example a simple library called Gson to covert string to json and
vice versa

Add the following dependency to your project

 implementation 'com.google.code.gson:gson:2.8.6'

And create the following Gson module:

●

●

●

Through @Provides, the annotated function gives Hilt the following information:
The return type tells Hilt what type the function provides instances of.
The parameters tell Hilt the dependencies required to provide the
type. In our case, there are none.
The function body tells Hilt how to provide an instance of the
corresponding type. Hilt executes the function body every time it
needs to provide an instance of that type.

In the MainActivity add the following code

We have successfully injected 3rd library dependency!

A bit more about @Binds and @Provides :

As you can see @Binds functions are abstract while @Provides functions have
a body. With @Binds the implementation is obvious. @Binds method can only
have a single parameter whose type is assignable to the return type.
@Provides method can have any number of parameters of any type.

More on @InstallIn
Now let’s look at the scope again, try writing the same lines in you Application
class. You will get an error!!

Do you remember the discussion on components? If you look at the
GsonModule component, it is installed in the ActivityComponent.class.
Therefore, it is only available during the lifetime of an activity rather than that of
the entire application.

For each Android class in which you can perform field injection, there's an
associated Hilt component that you can refer to in the @InstallIn annotation.
Each Hilt component is responsible for injecting its bindings into the
corresponding Android class.

The previous examples demonstrated the use of ActivityComponent in Hilt
modules.

Hilt automatically creates and destroys instances of generated component
classes following the lifecycle of the corresponding Android classes(for
example, all the activity components will be destroyed by hilt in the activity
onDestroy() method)

When it comes to classes such as Gson, Retrofit and Room database, we may
need to make them available to the entire application.

To correct this error, change the ActivityComponent.class to
SingletonComponent.class - The error is gone

But is the Gson object the same in MyApplication and MainActivity? No.

Scoping
Bindings in Hilt are naturally unscoped. This means that each time your app
requests the binding (the dependency), Hilt creates a new instance of the
needed type.

However, Hilt also allows a binding to be scoped to a particular component. Hilt
only creates a scoped binding once per instance of the component that the
binding is scoped to, and all requests for that binding share the same instance.

To ensure only one instance of Gson is available at a time, modify GsonModule
and add @Singleton annotation used to ensure that the generated instance is
the only one throughout the application’s lifecycle.

Because we scoped the GsonModule to the SingletonComponent using
@Singleton Hilt provides the same instance of GsonModule throughout the life

of the entire application.

ActivityScoped ensures that the instance is the same throughout the activity.
Same if we would have scoped any other adapter or module to the
ActivityComponent using @ActivityScoped, then Hilt would have provided the
same instance of that module throughout the life of the corresponding activity.

Please note that Scoping a binding to a component can be costly because the
provided object stays in memory until that component is destroyed.

To summarize the interfaces and the 3rd library in oppose to interfaces or class
we own but can’t call their constructor - this it how to obtain a single instance
of the AnalyticSercive:

Scoping and ViewModels

Originally if no scoping is done then activity retain a new instance upon each
configuration change. Like this:

In Hilt this will look like this:

The AnalyticsAdapter a scoped here to the Activity. When a new instance of
ExampleActivity is created (e.g. the activity goes through a configuration
change), a new instance of AnalyticsAdapter will be created.

To get the same instance we can achieve that through view models or with Hilt
(with or without ViewModels)

With View Models

With Hilt (No ViewModels) we use @ActivityRetainedScoped that scope
AnalyticsAdapter to the ActivityRetainedComponent which also survives
configuration changes

With Hilt and View Models - There is one major difference:

First, A Hilt View Model is a Jetpack ViewModel which his constructor injected
by Hilt. To enable injection of a ViewModel by Hilt use the @HiltViewModel
annotation:

SavedStateHandle is a default binding available to all Hilt View Models (more on
default bindings later on), while AnalyticsAdapter is a dependency which want
to provide to the View Model. This way of passing parameters to the view
model is the preferred way over the Factory methods.
But before we discuss this dependency scope let’s look at how the activity or
fragment retain an instance of that ViewModel.

The activity or fragments annotated with @AndroidEntryPoint can get the
ViewModel instance as normal using ViewModelProvider or the by
viewModels() KTX extension:

Only dependencies from the ViewModelComponent and its parent components

can be provided into the ViewModel.
All Hilt View Models are provided by the ViewModelComponent which follows
the same lifecycle as a ViewModel, i.e. it survives configuration changes. To
scope a dependency to a ViewModel use the @ViewModelScoped annotation.

If we own the class it will look like this:

If it is from a library then it will probably look like this:

A @ViewModelScoped type will make it so that a single instance of the scoped
type is provided across all dependencies injected into the Hilt View Model.
Other instances of a ViewModel that requests the scoped instance will
receive a different instance.

If a single instance needs to be shared across various View Models then it
should be scoped using either @ActivityRetainedScoped or @Singleton.

For example, we can scope a dependency to be shared within a single
ViewModel as such:

Or another example:

Since UserInputAuthData is scoped to the ViewModel, RegistrationViewModel
and LoginViewModel will receive a different instance of UserInputAuthData.
However, the UseCase dependencies of each ViewModel use the same instance
that its ViewModel uses.

Predefined qualifiers in Hilt
Hilt provides some predefined qualifiers. For example, as you might need the
Context class from either the application or the activity, Hilt provides the
@ApplicationContext and @ActivityContext qualifiers.

This is because Each Hilt component comes with a set of default bindings that
Hilt can inject as dependencies into your own custom bindings.

Integration with the Jetpack navigation library
Add the following additional dependencies to your app Gradle file:

 implementation("androidx.hilt:hilt-navigation-fragment:1.0.0")

If your ViewModel is scoped to the navigation graph, use the
hiltNavGraphViewModels function that works with fragments that are annotated
with @AndroidEntryPoint.

See a nice example https://stackoverflow.com/questions/66497047/hilt-doesnt-
inject-a-scoped-viewmodel

Inject dependencies in classes not supported by Hilt
Hilt comes with support for the most common Android classes. However, you
might need to perform field injection in classes that Hilt doesn't support.

In those cases, you can create an entry point using the @EntryPoint annotation.
An entry point is the boundary between code that is managed by Hilt and code
that is not. It is the point where code first enters into the graph of objects that
Hilt manages. Entry points allow Hilt to use code that Hilt does not manage to
provide dependencies within the dependency graph.

or example, Hilt doesn't directly support content providers. If you want a
content provider to use Hilt to get some dependencies, you need to define an
interface that is annotated with @EntryPoint for each binding type that you
want and include qualifiers. Then add @InstallIn to specify the component in
which to install the entry point as follows:

To access an entry point, use the appropriate static method from
EntryPointAccessors. The parameter should be either the component instance
or the @AndroidEntryPoint object that acts as the component holder. Make
sure that the component you pass as a parameter and the EntryPointAccessors
static method both match the Android class in the @InstallIn annotation on the
@EntryPoint interface:

In this example, you must use the ApplicationContext to retrieve the entry point
because the entry point is installed in SingletonComponent. If the binding that
you wanted to retrieve were in the ActivityComponent, you would instead use
the ActivityContext.

Unit tests
Hilt isn't necessary for unit tests, since when testing a class that uses
constructor injection, you don't need to use Hilt to instantiate that class.
Instead, you can directly call a class constructor by passing in fake or mock
dependencies, just as you would if the constructor wasn't annotated:

Hilt testing guide
One of the benefits of using dependency injection frameworks like Hilt is that it
makes testing your code easier.
You can read more about testing with hilt here
https://developer.android.com/training/dependency-injection/hilt-testing

https://developer.android.com/training/dependency-injection
https://developer.android.com/training/dependency-injection/hilt-android

https://medium.com/androiddevelopers/using-hilts-
viewmodelcomponent-53b46515c4f4
https://medium.com/androiddevelopers/scoping-in-android-and-hilt-
c2e5222317c0
https://dagger.dev/hilt/view-model.html

