פרק 1 - מבוא מתמטי לקורס
▼
קשרים וכמתים לוגיים, קבוצה, איבר של קבוצה, שייכות לקבוצה, שוויון בין קבוצות, קבוצה סופית, קבוצה אינסופית, הקבוצה הריקה, תת קבוצה, מספרים טבעיים, מספרים שלמים, מספרים רציונליים, מספרים אי רציונליים, מספרים ממשיים, ציר המספרים, קטעים על ציר המספרים, איחוד וחיתוך קבוצות, הפרש קבוצות, המשלים של קבוצה, סביבה של נקודה, נקודה פנימית, נקודה חיצונית, נקודת שפה, המשפט היסודי של האריתמטיקה, קבוצות חסומות וקבוצות לא חסומות, חסם תחתון (אינפימום) של קבוצה, חסם עליון (סופרמום) של קבוצה , מינימום ומקסימום של קבוצה, אקסיומת השלמות (אקסיומת החסם העליון), משפט ארכימדס, תכונת ארכימדס, קיום ויחידות הערך השלם, צפיפות (של הממשיים, הרציונליים והאי-רציונליים), סימן הסכימה, סכומים מפורסמים, אינדוקציה, אי שוויונים מפורסמים, פתרון אי-שוויונים, עצרת, המקדם הבינומי, הבינום של ניוטון, משולש פסקל, שדה, שדה שלם.
פרק 2 - הפונקציה הממשית - תכונות בסיסיות ופונקציות נפוצות
▼
מהי פונקציה, תחום הגדרה של פונקציה, תיאור גרפי של פונקציה, עליה וירידה של פונקציה, פונקציה מונוטונית, חיוביות ושליליות של פונקציה, פונקציה חסומה, פונקציה לינארית, פונקציה ריבועית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציה חזקה, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים ומתיחות של פונקציה, הפונקציות הטריגונומטריות, הפונקציות הטריגונומטריות ההפוכות, הפונקציות ההיפרבוליות, הפונקציות ההיפרבוליות ההפוכות, הצגה פרמטרית של פונקציה, הצגה פולרית של עקום.
פרק 3 - הפונקציה הממשית - תכונות מתקדמות
▼
תחום הגדרה של פונקציה, הרכבת פונקציות, פונקציה חד- חד ערכית, הפונקציה ההפוכה, תמונה של פונקציה, טווח של פונקציה, פונקציה על, פונקציה זוגית ופונקציה אי-זוגית, פונקציה מחזורית, פונקציה מפוצלת/תפר/מוטלאת, פונקציה אלמנטרית.
פרק 4 - גבול של פונקציה
▼
טכניקות לחישוב גבול של פונקציה, הצבה, פירוק לגורמים, הכפלה בצמוד, שאיפה לאינסוף, פונקציה השואפת לאינסוף, כלל הסנדוויץ , הגבול של אוילר, גבול לפונקציה מפוצלת, גבול לפי הגדרה
פרק 5 - רציפות של פונקציה - משפט ערך הביניים
▼
פונקציה רציפה, אי-רציפות מסוג ראשון, אי-רציפות מסוג שני, אי-רציפות סליקה, משפט ערך הביניים של קושי (הכללי), משפט ערך הביניים בגרסה השימושית, נקודת שבת, הגדרת רציפות על ידי גבול, הגדרת רציפות בעזרת אפסילון-דלתא, הגדרת רציפות בעזרת סדרות, שמונה משפטים הקשורים לרציפות (משפטי ויירשטראס ועוד), תנאי ליפשיץ, פונקציית דיריכלה, שיטת החצייה למציאת פתרון מקורב של משוואה.
פרק 6 - הגדרת הנגזרת - גזירות של פונקציה - נגזרות חד-צדדיות
▼
הגדרת הנגזרת, פונקציה גזירה, גזירות של פונקציה, משמעות הנגזרת, משיק אנכי, חוד, נגזרות חד צדדיות, נגזרת מימין, נגזרת משמל.
פרק 7 - חישוב נגזרת של פונקציה
▼
נגזרת הפונקציות היסודיות, נגזרת סכום הפרש מכפלה ומנה, נגזרת פונקציה מורכבת (כלל השרשרת), נגזרת פונקציה עם פרמטר, הנגזרת השנייה, נגזרת פונקציה בחזקת פונקציה, נגזרת פונקציה סתומה, גזירה לוגריתמית.
פרק 8 - חקירת פונקציה
▼
תחום הגדרה, זוגיות, חיתוך עם הצירים, נקודות קיצון, משפט פרמה, תחומי עליה וירידה, נקודות פיתול, תחומי קמירות וקעירות, אסימפטוטה אנכית, אסימפטוטה אופקית, אסימפטוטה משופעת, גרף, חקירה של פולינום, פונקציה רציונלית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציית שורש, פונקציה טריגונומטרית, פונקציה טריגונומטרית הפוכה, פונקצית ערך מוחלט, פונקציה לא גזירה.
פרק 9 - טורי טיילור - מקלורן
▼
סימן הסכימה, טור טיילור, טור מקלורן, תחום התכנסות של טור טיילור, שימושים של טורי טיילור - חישוב סכום של טור, חישוב גבולות, חישוב מקורבים בעזרת השארית של לייבניץ, חישובים מקורבים של אינטגרלים, חישובים מקורבים בעזרת נוסחת השארית של לגרנז'.
פרק 10 - סדרות
▼
מהי סדרה, גבול של סדרה, סדרה עולה וסדרה יורדת, סדרה חסומה, חסם עליון, חסם תחתון, סופרימום, אינפימום, אריתמטיקה של גבולות, הגבול של אוילר, כלל הסנדוויץ', כלל המנה, כלל השורש, סדרה רקורסיבית, חישוב גבול לפי ההגדרה, שלילת הגדרת הגבול, הגדרת הגבול לפי היינה, תת-סדרה, גבול חלקי, משפט בולצאנו וירשטראס, משפט שטולץ, מבחן קושי להתכנסות סדרות.
פרק 11 - אינטגרלים מיידיים
פרק 12 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''
פרק 13 - אינטגרלים בשיטת אינטגרציה בחלקים
פרק 14 - אינטגרלים בשיטת ההצבה
פרק 15 - אינטגרלים של פונקציות רציונליות
פרק 16 - אינטגרלים טריגונומטריים והצבות טריגונומטריות
▼
מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונומטרי על ידי הצבה, פתרון אינטגרל עם שורשים על ידי הצבה טריגונומטרית, חישוב שטחים בין פונקציות טריגונומטריות.
פרק 17 - האינטגרל המסוים, אינטגרביליות לפי רימן ולפי דארבו
▼
האינטגרל מסוים, הנוסחה היסודית של החדו"א, המשמעות הגיאומטרית של האינטגרל המסוים, כללי האינטגרל המסוים, האינטגרל המסוים ושיטות אינטגרציה, תכונת המונוטוניות של האינטגרל המסוים, אי שוויונות עם האינטגרל המסוים, סכום רימן, הסוגים השונים של סכומי רימן, אינטגרביליות לפי רימן, חישוב אינטגרל מסוים לפי ההגדרה של רימן, משפטים חשובים הקשורים לאינטגרביליות, אינטגרביליות לפי דארבו (חלוקה של קטע סגור, סכום דארבו עליון ותחתון, אינטגרל תחתון ואינטגרל עליון, האינטגרל המסוים ואינטגרביליות לפי דארבו, עידון של חלוקה).
פרק 18 - אינטגרלים לא אמיתיים
▼
אינטגרלה לא אמיתי (מוכלל), שימושים של אינטגרלים לא אמיתיים, מבחני התכנסות לאינטגרלים, מבחן ההשוואה, מבחן ההשוואה הגבולי, התכנסות בהחלט, מבחן דיריכלה, התכנסות בתנאי
פרק 19 - משוואות מסדר ראשון
▼
מהי משוואה דיפרנציאלית, משוואה פרידה (משוואה הניתנת להפרדת משתנים), משוואה הומוגנית, משוואה מהצורה ax+by+c)dx+(dx+ey+f)dy=0) , משוואה מדויקת, גורם אינטגרציה, משוואה לינארית (פתרון לפי נוסחה), משוואה לינארית (פתרון לפי וריאציית פרמטרים), משוואת ברנולי, משוואת ריקטי, משוואות הנפתרות על ידי הצבות שונות ומשונות, משפט הקיום והיחידות למשוואה מסדר ראשון על שם פיאנו ופיקארד, משפט הקיום והיחידות למשוואה לינארית מסדר ראשון, שיטת האטרציות של פיקארד (שיטת הקרובים העוקבים), משפט הקיום והיחידות בגרסת ליפשיץ, משפט הקיום והיחידות המורחב, פתרון גרפי בשיטת שדה כיוונים (שדה השיפועים), פתרון נומרי בשיטת אויילר, משוואה מסדר ראשון וממעלה גבוהה.
פרק 20 - משוואות ליניאריות מסדר שני
▼
משוואה חסרה - שיטת הורדת סדר המשוואה, משוואה לינארית, הומוגנית, עם מקדמים קבועים, עקרון הסופרפוזיציה, שיטת השוואת מקדמים, שיטת וריאציית הפרמטרים, משוואת אוילר, שיטת דאלמבר - שיטת הפתרון השני, נוסחת אבל, הוורונסקיאן ושימושיו, משפט הקיום והיחידות למשוואה לינארית מסדר שני, השיטה האופרטורית.
פרק 21 - קווים ותחומים במישור, משטחים וגופים במרחב
▼
בפרק זה נכיר את כל הקוים במישור (ישר, מעגל, אליפסה, פרבולה, היפרבולה) ואת התחומים החסומים בהם בהצגה אלגברית, פרמטרית ופולרית. בהמשך נכיר את המשטחים המפורסמים במרחב (מישור, ספירה, גליל אליפטי, חרוט אליפטי, היפרבולואיד חד יריעתי, היפרבולואיד דו יריעתי, פרבולואיד אליפטי, פרבולואיד היפרבולי) בהצגה אלגברית והצגה פרמטרית. לבסוף נתמקד בגופים במרחב בקואורדינטות קרטזיות, גליליות וכדוריות.
פרק 22 - פונקציות של מספר משתנים - מבוא, קווי גובה, משטחי רמה
▼
פונקציה של מספר משתנים, תחום הגדרה, קווי גובה, משטחי רמה.
פרק 23 - גבולות ורציפות של פונקציות של מספר משתנים
▼
טכניקות לחישוב גבול של פונקציה בשני משתנים, טכניקות להוכחת אי קיום גבול לפונקציה של שני משתנים, גבול לפי ההגדרה לפונקציה של שני משתנים. רציפות לפונקציה של שני משתנים, משפטי רציפות לפונקציה של שני משתנים (ויירשטראס וערך הביניים).
פרק 24 - נגזרות חלקיות דיפרנציאבליות
▼
נגזרות חלקיות מסדר ראשון, נגזרות חלקיות מסדר שני, נגזרות חלקיות לפי ההגדרה, דיפרנציאביליות
פרק 25 - כלל השרשרת בפונקציות של מספר משתנים
פרק 26 - נגזרת מכוונת וגרדיאנט
▼
גרדינט, נגזרת מכוונת, משמעות גיאומטרית של נגזרת מכוונת וגרדינט, משפטים הקשורים לנגזרת מכוונת וגרדינט, נגזרת מכוונת לפי ההגדרה, ישר פרמטרי משיק למשטח.
פרק 27 - פונקציות סתומות - שימושים גיאומטריים
▼
גזירה סתומה מסדר ראשון ושני, גזירה סתומה של מערכת משוואות, משפט הפונקציה הסתומה - הפן התיאורטי, מישור משיק למשטח, ישר ניצב למשטח, ישר משיק לעקום, מישור נורמלי לעקום, ישר משיק ומישור נורמלי לעקום חיתוך של שני משטחים, מישור משיק וישר ניצב למשטח פרמטרי .
פרק 28 - נוסחת טיילור לפונקציה של שני משתנים והדיפרנציאל השלם
▼
נוסחת טיילור לפונקציה של שני משתנים, הדיפרנציאל השלם (נוסחת הקירוב הלינארי).
פרק 29 - קיצון ואוכף לפונקציה של שני משתנים
פרק 30 - קיצון של פונקציה רבת משתנים (רמה מתקדמת) - הריבועים הפחותים
פרק 31 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')
פרק 32 - קיצון של פונקציה של שלושה משתנים תחת אילוצים
פרק 33 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה
▼
מציאת מקסימום ומינימום מוחלטים/גלובליים לפונקציה של שני משתנים בקבוצה סגורה וחסומה כגון משולש, טרפז, עיגול וכו
פרק 34 - החלפת משתנים באינטגרל כפול (יעקוביאן)
פרק 35 - אינטגרלים כפולים בקואורדינטות קוטביות (פולריות)
פרק 36 - אינטגרלים קוויים ושימושיהם
▼
הצגה פרמטרית של עקום, עקומים פרמטרים נפוצים, אינטגרל קוי מסוג ראשון, שדה וקטורי, אינטגרל קוי מסוג שני, אורך עקום, מסה ומרכז של עקום, עבודה של שדה כח.
פרק 37 - שדות משמרים - אי תלות במסלול
▼
תחום פשוט קשר, שדה משמר, מציאת פונקצית פוטנציאל, המשפט היסודי של האינטגרלים הקוויים, אי תלות במסלול, משפט השדה "הכמעט משמר".
פרק 38 - משפט גרין
▼
משפט גרין, משפט גרין המוכלל
פרק 39 - אינטגרלים כפולים
▼
אינטגרלים כפולים, החלפת סדר אינטגרציה באינטגרל כפול
פרק 40 - שימושי האינטגרל הכפול
▼
חישוב שטחים בעזרת אינטגרל כפול, חישוב נפח גוף עם אינטגרל כפול, חישוב מסה של לוח דק, חישוב מרכז כובד של לוח דק, חישוב מומנט התמד של לוח דק, חישוב שטח פנים של משטח.
פרק 41 - נושאים מתקדמים - הצגה פרמטרית של פונקציה
▼
הצגה פרמטרית של עקום, עקומים פרמטרים נפוצים, גזירה פרמטרית, משיק, משיק אנכי, חישוב שטחים, חישוב אורך עקום, חישוב שטח מעטפת של גוף סיבוב, עקום פרמטרי במרחב.
פרק 42 - נושאים מתקדמים - הצגה פולרית של פונקציה
▼
קואורדינטות פולריות (קוטביות), עקומים פולרים נפוצים (קו, מעגל, קרדיואידה, למינסקטה, ורד ועוד) , הנגזרת ושימושיה, חישוב שטחים, חישוב אורך קשת, חישוב שטח מעטפת של גוף סיבוב.