תלמידים יקרים!
קורס זה אינו מותאם לסילבוס מסוים כלשהו, אלא ניתן כהכנה כללית לקורס 'פיזיקה מודרנית'. אנו ממליצים לעבור על הפרקים ולוודא כי הטכניקה וההיכרות שלכם עם הנושאים השונים יושבת ברמה מספקת על מנת שתוכלו להפיק את המיטב מלימודי הקורס פיזיקה מודרנית.
בהצלחה!
צוות האתר גול.
פרק 1 - מספרים מרוכבים (קומפלקסים)
▼
הגדרת i, הגדרת מספר מרוכב, המספר הצמוד, חקירת משוואה ריבועית מרוכבת, מישור גאוס והצגה קוטבית (פולארית) של מספר מרוכב. פעולות חשבון בהצגה קוטבית, נוסחת דה מואבר למציאת שורשים של מספר מרוכב, סדרות עם מספרים מרוכבים.
פרק 2 - חשבון דיפרנציאלי - הפונקציה הממשית - תכונות בסיסיות ופונקציות נפוצות
▼
מהי פונקציה, תחום הגדרה של פונקציה, תיאור גרפי של פונקציה, עליה וירידה של פונקציה, פונקציה מונוטונית, חיוביות ושליליות של פונקציה, פונקציה חסומה, פונקציה לינארית, פונקציה ריבועית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציה חזקה, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים ומתיחות של פונקציה, הפונקציות הטריגונומטריות, הפונקציות הטריגונומטריות ההפוכות, הפונקציות ההיפרבוליות, הפונקציות ההיפרבוליות ההפוכות, הצגה פרמטרית של פונקציה, הצגה פולרית של עקום.
פרק 3 - חשבון דיפרנציאלי - נגזרות ומשיקים
▼
נגזרות יסודיות, מציאת שיפוע משיק לגרף פונקציה, מציאת משוואת משיק לגרף פונקציה, שאלות שונות עם משיקים.
פרק 4 - חשבון דיפרנציאלי - חקירת פונקצית פולינום
▼
פונקציה זוגית ואי-זוגית, הקשר שבין גרף הפונקציה לגרף הנגזרת, חקירת פונקצית פולינום.
פרק 5 - חשבון דיפרנציאלי - חקירת פונקצית מנה ושורש
▼
שאלות עם משיקים לפונקציות מנה ושורש, תחום הגדרה של פונקצית מנה ושורש, נקודות קיצון ותחומי עלייה וירידה של פונקצית מנה ושורש, אסימפטוטות של פונקצית מנה ושורש, נקודות פיתול ותחומי קמירות וקעירות של פונקצית מנה ושורש, חקירת פונקצית מנה ושורש, חקירת פונקציה עם פרמטר.
פרק 6 - חשבון דיפרנציאלי - חקירת פונקציות טריגונומטריות
▼
נגזרות טריגונומטריות, זוגיות של פונקציה, מחזוריות של פונקציה, שאלות עם גזירה של פונקציה, שאלות עם משיקים בפונקציות טריגונומטריות, מציאת תחום הגדרה של פונקציות טריגונומטריות, מציאת נקודות קיצון של פונקציות טריגונומטריות, אסימפטוטות עם פונקציות טריגונומטריות, נקודות פיתול ותחומי קמירות וקעירות של פונקציות טריגונומטריות, חקירת פונקציה טריגונומטרית.
פרק 7 - חשבון דיפרנציאלי - פונקציות מעריכיות
▼
שאלות עם נגזרות מעריכיות, תחום הגדרה של פונקציה מעריכיות, שימושי הנגזרת עם פונקציות מעריכיות, חקירת פונקציה מעריכיות.
פרק 8 - חשבון דיפרנציאלי - פונקציות לוגריתמיות
▼
שאלות עם נגזרות לוגריתמיות, תחום הגדרה של פונקציה לוגריתמית, שימושי הנגזרת עם פונקציות לוגריתמיות, חקירת פונקציה לוגריתמית.
פרק 9 - חשבון דיפרנציאלי - פונקצית חזקה עם מעריך רציונאלי
▼
שאלות עם נגזרות של פונקצית חזקה עם מעריך רציונאלי, תחום הגדרה של של פונקצית חזקה עם מעריך רציונאלי, שימושי הנגזרת עם של פונקצית חזקה עם מעריך רציונאלי, חקירת של פונקצית חזקה עם מעריך רציונאלי.
פרק 10 - חשבון דיפרנציאלי - פונקציות טריגונומטריות הפוכות
פרק 11 - אלגברה ליניארית - פתרון וחקירת מערכת משוואות ליניאריות
▼
מערכת משוואות לינאריות, מספר הפתרונות של מערכת משוואות לינאריות, מערכת משוואות לינאריות מדורגת, תהליך הדירוג/החילוץ של גאוס לפתרון מערכת משוואות לינאריות, מערכת משוואות ליניאריות הומוגנית, הקשר שבין מערכת משוואות לינאריות למערכת ההומוגנית המתאימה לה, שימושים של מערכות משוואות לינאריות.
פרק 12 - אלגברה ליניארית - מטריצות
▼
הגדרת מטריצה, מטריצה ריבועית, מטריצת האפס, מטריצה היחידה, מטריצה משולשת עליונה, מטריצה משולשת תחתונה, מטריצה אלכסונית, מטריצה סימטרית, מטריצה אנטי-סימטרית, כפל מטריצה בסקלר, חיבור וחיסור מטריצות, כפל מטריצות, העקבה של מטריצה, המטריצה המשוחלפת, המטריצה ההופכית, דרגה של מטריצה, הצגת מערכת משוואות בעזרת כפל מטריצות, פתרון מערכת משוואות בעזרת המטריצה ההופכית, מטריצה אלמנטרית, פירוק LU, רגרסיה לינארית.
פרק 13 - אלגברה ליניארית - דטרמיננטות
▼
הגדרת דטרמיננטה, כללי דטרמיננטות, כלל קרמר, מטריצה צמודה קלאסית, חישוב המטריצה ההופכית בעזרת דטרמיננטות, שימושי הדטרמיננטה.
פרק 14 - אלגברה ליניארית - וקטורים גיאומטריים
▼
מהו וקטור, העתקת וקטורים, כפל וקטור בסקלר, חיבור וחיסור וקטורים, וקטורים מקבילים ושווים, וקטורים הפורשים מישור, מכפלה סקלרית, גודל של וקטור, כפל וקטורים.
פרק 15 - אלגברה ליניארית - וקטורים אלגבריים
▼
מהו וקטור אלגברי, וקטור שמוצאו אינו בראשית הצירים, אמצע קטע וחלוקת קטע ביחס נתון, מכפלה סקלרית וגודל של וקטור בהצגה אלגברית, הצגה פרמטית של ישר, מצב הדדי בין ישרים במרחב, הצגה פרמטרית של מישור, משוואת מישור, מצב הדדי בין מישורים במרחב, ישר חיתוך בין שני מישורים, זווית בין שני ישרים, זווית בין ישר ומישור, זווית בין שני מישורים, מרחק בין שתי נקודות במרחב, מרחק בין נקודה לישר, מרחק בין נקודה למישור, מרחק בין ישר ומישור, מרחק בין מישורים מקבילים, מרחק בין ישרים מצטלבים.
פרק 16 - אלגברה ליניארית - מרחבים וקטורים
▼
מרחב וקטורי (ליניארי), תת מרחב וקטורי, צרוף לינארי, פרישה ליניארית, תלות ואי-תלות ליניארית, בסיס ומימד, דרגה של מטריצה, וקטור קואורדינטות, מטריצת מעבר מבסיס לבסיס.