סטודנטים יקרים,
הקורס הותאם לפי הסילבוס העדכני בעקבות "חרבות ברזל"
בהצלחה בקורס!
פרק 1 - הפונקציה הממשית - תכונות בסיסיות ופונקציות נפוצות
▼
מהי פונקציה, תחום הגדרה של פונקציה, תיאור גרפי של פונקציה, עליה וירידה של פונקציה, פונקציה מונוטונית, חיוביות ושליליות של פונקציה, פונקציה חסומה, פונקציה לינארית, פונקציה ריבועית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציה חזקה, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים ומתיחות של פונקציה, הפונקציות הטריגונומטריות, הפונקציות הטריגונומטריות ההפוכות, הפונקציות ההיפרבוליות, הפונקציות ההיפרבוליות ההפוכות, הצגה פרמטרית של פונקציה, הצגה פולרית של עקום.
פרק 2 - הפונקציה הממשית - תכונות מתקדמות
▼
תחום הגדרה של פונקציה, הרכבת פונקציות, פונקציה חד- חד ערכית, הפונקציה ההפוכה, תמונה של פונקציה, טווח של פונקציה, פונקציה על, פונקציה זוגית ופונקציה אי-זוגית, פונקציה מחזורית, פונקציה מפוצלת/תפר/מוטלאת, פונקציה אלמנטרית.
פרק 3 - גבול של פונקציה
▼
טכניקות לחישוב גבול של פונקציה, הצבה, פירוק לגורמים, הכפלה בצמוד, שאיפה לאינסוף, פונקציה השואפת לאינסוף, כלל הסנדוויץ , הגבול של אוילר, גבול לפונקציה מפוצלת, גבול לפי הגדרה
פרק 4 - רציפות של פונקציה - משפט ערך הביניים
▼
פונקציה רציפה, אי-רציפות מסוג ראשון, אי-רציפות מסוג שני, אי-רציפות סליקה, משפט ערך הביניים של קושי (הכללי), משפט ערך הביניים בגרסה השימושית, נקודת שבת, הגדרת רציפות על ידי גבול, הגדרת רציפות בעזרת אפסילון-דלתא, הגדרת רציפות בעזרת סדרות, שמונה משפטים הקשורים לרציפות (משפטי ויירשטראס ועוד), תנאי ליפשיץ, פונקציית דיריכלה, שיטת החצייה למציאת פתרון מקורב של משוואה.
פרק 5 - הגדרת הנגזרת - גזירות של פונקציה - נגזרות חד-צדדיות
▼
הגדרת הנגזרת, פונקציה גזירה, גזירות של פונקציה, משמעות הנגזרת, משיק אנכי, חוד, נגזרות חד צדדיות, נגזרת מימין, נגזרת משמל.
פרק 6 - חישוב נגזרת של פונקציה
▼
נגזרת הפונקציות היסודיות, נגזרת סכום הפרש מכפלה ומנה, נגזרת פונקציה מורכבת (כלל השרשרת), נגזרת פונקציה עם פרמטר, הנגזרת השנייה, נגזרת פונקציה בחזקת פונקציה, נגזרת פונקציה סתומה, גזירה לוגריתמית.
פרק 7 - משיק, נורמל, נוסחת הקירוב הליניארי
▼
משיק, שיפוע של פונקציה, הזווית בין משיק לציר x, משיק אנכי, בעיות משיקים ללא שימוש בנוסחת המשיק, בעיות משיקים עם שימוש בנוסחת המשיק, הנורמל, זווית בין שתי עקומות, נוסחת הקירוב הליניארי (הדיפרנציאל השלם).
פרק 8 - כלל לופיטל
▼
שימוש בכלל לופיטל לחישוב גבול מהורה אפס חלקי אפס, אינסוף חלקי אינסוף, אפס כפול אינסוף, אחד בחזקת אינסוף, אפס בחזקת אפס, אינסוףבחזקת אפס, אינסוף פחות אינסוף, חישוב גבול במקרה שלופיטל נכשל
פרק 9 - טורי טיילור - מקלורן
▼
סימן הסכימה, טור טיילור, טור מקלורן, תחום התכנסות של טור טיילור, שימושים של טורי טיילור - חישוב סכום של טור, חישוב גבולות, חישוב מקורבים בעזרת השארית של לייבניץ, חישובים מקורבים של אינטגרלים, חישובים מקורבים בעזרת נוסחת השארית של לגרנז'.
פרק 10 - חקירת פונקציה
▼
תחום הגדרה, זוגיות, חיתוך עם הצירים, נקודות קיצון, משפט פרמה, תחומי עליה וירידה, נקודות פיתול, תחומי קמירות וקעירות, אסימפטוטה אנכית, אסימפטוטה אופקית, אסימפטוטה משופעת, גרף, חקירה של פולינום, פונקציה רציונלית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציית שורש, פונקציה טריגונומטרית, פונקציה טריגונומטרית הפוכה, פונקצית ערך מוחלט, פונקציה לא גזירה.
פרק 11 - מינימום ומקסימום מוחלטים לפונקציה
▼
הגדרת קיצון מקומי וקיצון מוחלט (גלובלי) לפונקציה. מציאת קיצון מוחלט בקטע סגור, מציאת קיצון מוחלט בקטע פתוח, הוכחת אי שוויונים.
פרק 12 - קווים ותחומים במישור, משטחים וגופים במרחב
▼
בפרק זה נכיר את כל הקוים במישור (ישר, מעגל, אליפסה, פרבולה, היפרבולה) ואת התחומים החסומים בהם בהצגה אלגברית, פרמטרית ופולרית. בהמשך נכיר את המשטחים המפורסמים במרחב (מישור, ספירה, גליל אליפטי, חרוט אליפטי, היפרבולואיד חד יריעתי, היפרבולואיד דו יריעתי, פרבולואיד אליפטי, פרבולואיד היפרבולי) בהצגה אלגברית והצגה פרמטרית. לבסוף נתמקד בגופים במרחב בקואורדינטות קרטזיות, גליליות וכדוריות.
פרק 13 - פונקציות של מספר משתנים - מבוא, קווי גובה, משטחי רמה
▼
פונקציה של מספר משתנים, תחום הגדרה, קווי גובה, משטחי רמה.
פרק 14 - אינטגרלים מיידיים
פרק 15 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''
פרק 16 - אינטגרלים בשיטת אינטגרציה בחלקים
פרק 17 - אינטגרלים בשיטת ההצבה
פרק 18 - אינטגרלים של פונקציות רציונליות
פרק 19 - האינטגרל המסוים, אינטגרביליות לפי רימן
▼
האינטגרל מסוים, הנוסחה היסודית של החדו"א, המשמעות הגיאומטרית של האינטגרל המסוים, כללי האינטגרל המסוים, האינטגרל המסוים ושיטות אינטגרציה, תכונת המונוטוניות של האינטגרל המסוים, אי שוויונות עם האינטגרל המסוים, סכום רימן, הסוגים השונים של סכומי רימן, אינטגרביליות לפי רימן, חישוב אינטגרל מסוים לפי ההגדרה של רימן, משפטים חשובים הקשורים לאינטגרביליות, אינטגרביליות לפי דארבו (חלוקה של קטע סגור, סכום דארבו עליון ותחתון, אינטגרל תחתון ואינטגרל עליון, האינטגרל המסוים ואינטגרביליות לפי דארבו, עידון של חלוקה).
פרק 20 - שימושי האינטגרל המסויים (נפח-שטח מעטפת)
▼
חישוב נפח גוף סיבוב סביב ציר x וסביב ציר y בשיטת הדיסקות (קוולירי) ובשיטת הקליפות הגליליות, חישוב נפח גוף סיבוב סביב ישרים המקבילים לצירים, חישוב שטח מעטפת של גוף סיבוב סביב ציר x וסביב ציר y, חישוב נפח גוף שהוא אינו גוף סיבוב.
פרק 21 - שימושי האינטגרל המסויים (שטח-אורך קשת)
▼
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.