פרק 1 - שדות
▼
שדה, דוגמאות לשדות, שדה השאריות מודולו p, תת-שדה, מאפיין של שדה, חזרה על מושגים בלוגיקה ותורת הקבוצות.
פרק 2 - מספרים מרוכבים ופתרון משוואות פולינומיאליות
▼
הגדרת מספר מרוכב, הצמוד המרוכב, פעולות בין מספרים מרוכבים (חיבור, חיסור, כפל, חילוק), הצגת קוטבית של מספר מרוכב, הצגה מעריכית של מספר מרוכב (נוסחת אוילר), נוסחת דה-מואבר (חזקה ושורש של מספר מרוכב), פתרון משוואות מרוכבות, שימושים של מספרים מרוכבים באלגברה לינארית (פעולות בין וקטורים, מערכת משוואות, תת-מרחבים, תלות לינארית, ערכים עצמיים ווקטורים עצמיים), חילוק פולינומים, פתרון משוואות פולינומיאליות.
פרק 3 - פתרון וחקירת מערכת משוואות ליניאריות
▼
מערכת משוואות לינאריות, מספר הפתרונות של מערכת משוואות לינאריות, מערכת משוואות לינאריות מדורגת, תהליך הדירוג/החילוץ של גאוס לפתרון מערכת משוואות לינאריות, מערכת משוואות ליניאריות הומוגנית, הקשר שבין מערכת משוואות לינאריות למערכת ההומוגנית המתאימה לה, שימושים של מערכות משוואות לינאריות.
פרק 4 - מטריצות
▼
הגדרת מטריצה, מטריצה ריבועית, מטריצת האפס, מטריצה היחידה, מטריצה משולשת עליונה, מטריצה משולשת תחתונה, מטריצה אלכסונית, מטריצה סימטרית, מטריצה אנטי-סימטרית, כפל מטריצה בסקלר, חיבור וחיסור מטריצות, כפל מטריצות, העקבה של מטריצה, המטריצה המשוחלפת, המטריצה ההופכית, דרגה של מטריצה, הצגת מערכת משוואות בעזרת כפל מטריצות, פתרון מערכת משוואות בעזרת המטריצה ההופכית, מטריצה אלמנטרית, פירוק LU, רגרסיה לינארית.
פרק 5 - דטרמיננטות
▼
הגדרת דטרמיננטה, כללי דטרמיננטות, כלל קרמר, מטריצה צמודה קלאסית, חישוב המטריצה ההופכית בעזרת דטרמיננטות, שימושי הדטרמיננטה.
פרק 6 - מרחבים וקטורים
▼
מרחב וקטורי (ליניארי), תת מרחב וקטורי, צרוף לינארי, פרישה ליניארית, תלות ואי-תלות ליניארית, בסיס ומימד, דרגה של מטריצה, וקטור קואורדינטות, מטריצת מעבר מבסיס לבסיס.
פרק 7 - העתקות ליניאריות
▼
העתקה (טרנספורמציה) לינארית, גרעין ותמונה של העתקה לינארית, העתקה חח"ע, העתקה על, איזומורפיזם, פעולות עם העתקות לינאריות.
פרק 8 - מטריצות והעתקות לינאריות
▼
מטריצה שמייצגת העתקה לפי בסיס, עקבה של העתקה, דטרמיננטה של העתקה, דרגה של העתקה, חזקה של העתקה, גרעין ותמונה של העתקה, מטריצה שמייצגת העתקה מבסיס לבסיס, ההעתקה ההפוכה, מכפלה/הרכבה של העתקות, ערכים עצמיים ווקטורים עצמיים של העתקה, לכסון העתקות.
פרק 9 - מרחבי מכפלה פנימית
▼
מכפלה פנימית, מרחב מכפלה פנימית, נורמה של וקטור, וקטור יחידה, נירמול של וקטור, מרחק בין וקטורים, אי שוויון קושי שוורץ, אי שוויון המשולש, זווית בין וקטורים, אורתוגונליות, משלים אורתוגונלי.
פרק 10 - קבוצות אורתוגונליות, בסיסים אורתוגונליים, התהליך של גרם-שמידט
▼
קבוצה אורתוגונלית, בסיס אורתוגונלי, בסיס אורתונורמלי, שוויון פרסבל, אי-שוויון בסל, ההיטל של וקטור על וקטור, ההיטל של וקטור על תת-מרחב, תהליך גרהם-שמידט.
פרק 11 - ערכים עצמיים-וקטורים עצמיים-לכסון מטריצות - דימיון
▼
ערכים עצמיים, וקטורים עצמיים, מטריצה אופינית, פולינום אופייני, ריבוב אלגברי וריבוב גיאומטרי של ערך עצמי, מרחב עצמי, לכסון מטריצות, חזקה של מטריצה, פולינום מינימלי, משפט קיילי המילטון, דמיון מטריצות, מטריצות דומות.
פרק 12 - שדה השאריות מודולו p
▼
תרגילים מעל שדה השאריות מודולו p בנושאים הבאים: פתרון וחקירת מערכת משוואות, מטריצות, מרחבים וקטורים, העתקות לינאריות, מטריצה שמייצגת העתקה.
פרק 13 - וקטורים אלגברים - גיאומטריה אנליטית במרחב
▼
מהו וקטור אלגברי, וקטור שמוצאו אינו בראשית הצירים, אמצע קטע וחלוקת קטע ביחס נתון, מכפלה סקלרית וגודל של וקטור בהצגה אלגברית, הצגה פרמטית של ישר, מצב הדדי בין ישרים במרחב, הצגה פרמטרית של מישור, משוואת מישור, מצב הדדי בין מישורים במרחב, ישר חיתוך בין שני מישורים, זווית בין שני ישרים, זווית בין ישר ומישור, זווית בין שני מישורים, מרחק בין שתי נקודות במרחב, מרחק בין נקודה לישר, מרחק בין נקודה למישור, מרחק בין ישר ומישור, מרחק בין מישורים מקבילים, מרחק בין ישרים מצטלבים.