פרק 1 - גבול של פונקציה
▼
הצבה, צמצום, הכפלה בצמוד, פונקציה שואפת לאינסוף,
איקס שואף לאינסוף, הגבול של אוילר, כלל הסנדוויץ, גבול של פונקציה מפוצלת, גבול לפי הגדרה.
פרק 2 - רציפות של פונקציה - משפט ערך הביניים
▼
רציפות של פונקציה, משפט ערך הביניים, שיטת החצייה.
פרק 3 - הגדרת הנגזרת - גזירות של פונקציה - נגזרות חד-צדדיות
▼
הגדרת הנגזרת, גזירות של פונקציה, נגזרות חד-צדדיות,
פרק 4 - חישוב נגזרת של פונקציה
▼
כללי הגזירה, תרגול בכללי הגזירה, גזירה סתומה, כלל השרשרת, גזירה לוגריתמית, נגזרת הפונקציה ההפוכה, תרגול נוסף בכללי הגזירה.
פרק 5 - חישוב נגזרת של פונקציות מיוחדות
▼
נגזרת הפונקציה ההפוכה, נגזרת מסדר גבוה, נוסחת לייבניץ, גזירה פרמטרית
פרק 6 - משיק, נורמל, נוסחת הקירוב הליניארי
▼
משיק, שיפוע של פונקציה, הזווית בין משיק לציר x, משיק אנכי, בעיות משיקים ללא שימוש בנוסחת המשיק, בעיות משיקים עם שימוש בנוסחת המשיק, הנורמל, זווית בין שתי עקומות, נוסחת הקירוב הליניארי (הדיפרנציאל השלם).
פרק 7 - כלל לופיטל
▼
גבול מהצורה אפס חלקי אפס ואינסוף חלקי אינסוף, גבול מהצורה אפס כפול אינסוף, גבול מהצורה אינסוף פחות אינסוף, גבול מהצורה אחד בחזקת אינסוף, מקרים בהם כלל לופיטל נכשל.
פרק 8 - חקירת פונקציה
▼
מושגי יסוד, חקירת פולינום, חקירת פונקציה רציונלית, חקירת פונקציה מעריכית, חקירת פונקציה לוגריתמית, חקירת פונקציה עם שורשים, חקירת פונקציה לא גזירה - שורש וערך מוחלט.
פרק 9 - חקירת פונקציה ("שאלות מסביב")
▼
חקירת פונקציה - שאלות מסביב, הוכחת אי שוויונים
פרק 10 - בעיות מקסימום ומינימום (בעיות קיצון)
▼
בעיות קיצון כלכליות מסוג ראשון, בעיות קיצון כלכליות מסוג שני, בעיות קיצון יסודיות עם מספרים, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת המישור
פרק 11 - מציאת מספר הפתרונות של משוואה (משפטי קושי ורול)
▼
מציאת מספר הפתרונות של משוואה, משפט רול
פרק 12 - משפט לגראנז'
▼
הוכחת אי שויונים בקטע [a,b], הוכחת אי שויונים בקטע [o,x], הוכחת אי שוויונים עם מספרים, שאלות כלליות
פרק 13 - גמישות הביקוש
פרק 14 - אינטגרלים מיידיים ואינטגרלים בשיטת "הנגזרת כבר בפנים"
▼
האינטגרל הלא מסויים - מבוא, כללי אינטגרציה, אינטגרלים בשיטת "הנגזרת כבר בפנים", מציאת פונקציה קדומה,
פרק 15 - אינטגרלים בשיטת אינטגרציה בחלקים
▼
אינטגרלים בשיטת אינטגרציה בחלקים
פרק 16 - אינטגרלים בשיטת ההצבה
▼
אינטגרלים בשיטת ההצבה
פרק 17 - אינטגרלים של פונקציות רציונליות
▼
אינטגרלים של פונקציה רציונלית, חילוק פולינומים ואינטגרלים של פונקציה רציונלית, אינטגרלים שמשלבים הצבה ופונקציה רציונלית
פרק 18 - האינטגרל המסוים, סכומי רימן
▼
האינטגרל המסוים, אי שוויונים עם אינטגרלים, סכומי רימן
פרק 19 - שימושי האינטגרל המסויים (שטח-אורך קשת)
▼
חישוב שטח הכלוא בין גרף פונקציה וציר ה-x, חישוב שטח כאשר הפונקציה מתחת לציר ה-x, חישוב שטח הכלוא בין שתי פונקציות, חישוב שטחים מורכבים, חישוב שטחים ביחס לציר ה-y, אורך קשת
פרק 20 - פונקציות של שני משתנים
▼
פונקציה של שני משתנים, קווי גובה (נקראים גם קווי/עקומות רמה או קווי/עקומות אדישות או עקומות שוות ערך), משטחים מפורסמים (מישור, שפת כדור, אליפסואיד, גליל אליפטי, חרוט אליפטי, היפרבולואיד, פרבולואיד).
פרק 21 - נגזרות חלקיות
פרק 22 - כלל השרשרת בפונקציות של מספר משתנים
פרק 23 - פונקציות סתומות
פרק 24 - קיצון ואוכף לפונקציה של שני משתנים
פרק 25 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')
פרק 26 - פונקציות הומוגניות-משפט אוילר
פרק 27 - פתרון בחינות לדוגמא בר אילן