פרק 1 - אינטגרלים מיידיים
פרק 2 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''
פרק 3 - אינטגרלים בשיטת אינטגרציה בחלקים
פרק 4 - אינטגרלים בשיטת ההצבה
פרק 5 - אינטגרלים של פונקציות רציונליות
פרק 6 - אינטגרלים טריגונומטריים והצבות טריגונומטריות
▼
מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונומטרי על ידי הצבה, פתרון אינטגרל עם שורשים על ידי הצבה טריגונומטרית, חישוב שטחים בין פונקציות טריגונומטריות.
פרק 7 - האינטגרל המסוים, אינטגרביליות לפי רימן ולפי דארבו
▼
האינטגרל מסוים, הנוסחה היסודית של החדו"א, המשמעות הגיאומטרית של האינטגרל המסוים, כללי האינטגרל המסוים, האינטגרל המסוים ושיטות אינטגרציה, תכונת המונוטוניות של האינטגרל המסוים, אי שוויונות עם האינטגרל המסוים, סכום רימן, הסוגים השונים של סכומי רימן, אינטגרביליות לפי רימן, חישוב אינטגרל מסוים לפי ההגדרה של רימן, משפטים חשובים הקשורים לאינטגרביליות, אינטגרביליות לפי דארבו (חלוקה של קטע סגור, סכום דארבו עליון ותחתון, אינטגרל תחתון ואינטגרל עליון, האינטגרל המסוים ואינטגרביליות לפי דארבו, עידון של חלוקה).
פרק 8 - שימושי האינטגרל המסויים (שטח-אורך קשת)
▼
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.
פרק 9 - שימושי האינטגרל המסויים (נפח-שטח מעטפת)
▼
חישוב נפח גוף סיבוב סביב ציר x וסביב ציר y בשיטת הדיסקות (קוולירי) ובשיטת הקליפות הגליליות, חישוב נפח גוף סיבוב סביב ישרים המקבילים לצירים, חישוב שטח מעטפת של גוף סיבוב סביב ציר x וסביב ציר y, חישוב נפח גוף שהוא אינו גוף סיבוב.
פרק 10 - המשפט היסודי של החדו"א, משפטי הערך הממוצע לאינטגרלים
פרק 11 - אינטגרלים לא אמיתיים
▼
אינטגרלה לא אמיתי (מוכלל), שימושים של אינטגרלים לא אמיתיים, מבחני התכנסות לאינטגרלים, מבחן ההשוואה, מבחן ההשוואה הגבולי, התכנסות בהחלט, מבחן דיריכלה, התכנסות בתנאי
פרק 12 - סדרות פונקציות, טורי פונקציות וטורי חזקות
▼
סדרת פונקציות, התכנסות נקודתית של סדרת פונקציות, התכנסות במידה שווה של סדרת פונקציות, טור פונקציות, התכנסות של טור פונקציות, התכנסות במידה שווה של טור פונקציות, טורי חזקות, התכנסות של טורי חזקות, פיתוח פונקציה לטור חזקות, גזירה ואינטגרציה של טורי חזקות, גזירה ואינטגרציה איבר איבר, סכום של טור פונקציות, סכום של טור עם איברים קבועים.
פרק 13 - טורי טיילור - מקלורן
▼
טור טיילור, טור מקלורן, תחום התכנסות של טור טיילור, חישובים מקורבים בעזרת טורי טיילור.
פרק 14 - קווים ותחומים במישור, משטחים וגופים במרחב
▼
בפרק זה נכיר את כל הקוים במישור (ישר, מעגל, אליפסה, פרבולה, היפרבולה) ואת התחומים החסומים בהם בהצגה אלגברית, פרמטרית ופולרית. בהמשך נכיר את המשטחים המפורסמים במרחב (מישור, ספירה, גליל אליפטי, חרוט אליפטי, היפרבולואיד חד יריעתי, היפרבולואיד דו יריעתי, פרבולואיד אליפטי, פרבולואיד היפרבולי) בהצגה אלגברית והצגה פרמטרית. לבסוף נתמקד בגופים במרחב בקואורדינטות קרטזיות, גליליות וכדוריות.
פרק 15 - פונקציות של מספר משתנים - מבוא, קווי גובה, משטחי רמה
▼
פונקציה של מספר משתנים, תחום הגדרה, קווי גובה, משטחי רמה.
פרק 16 - גבולות ורציפות של פונקציות של מספר משתנים
▼
טכניקות לחישוב גבול של פונקציה בשני משתנים, טכניקות להוכחת אי קיום גבול לפונקציה של שני משתנים, גבול לפי ההגדרה לפונקציה של שני משתנים. רציפות לפונקציה של שני משתנים, משפטי רציפות לפונקציה של שני משתנים (ויירשטראס וערך הביניים).
פרק 17 - נגזרות חלקיות דיפרנציאבליות
▼
נגזרות חלקיות מסדר ראשון, נגזרות חלקיות מסדר שני, נגזרות חלקיות לפי ההגדרה, דיפרנציאביליות
פרק 18 - כלל השרשרת בפונקציות של מספר משתנים
פרק 19 - קיצון של פונקציה רבת משתנים (רמה מתקדמת) - הריבועים הפחותים
פרק 20 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')
פרק 21 - קיצון של פונקציה של שלושה משתנים תחת אילוצים
פרק 22 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה
▼
מציאת מקסימום ומינימום מוחלטים/גלובליים לפונקציה של שני משתנים בקבוצה סגורה וחסומה כגון משולש, טרפז, עיגול וכו