אל תפספסו את ההצעה הכי משתלמת שלנו!!!
מנוי חופשי לכל הקורסים שלכם
בטח, ספרו לי עוד!
חדוא 71071
מחיר הקורס: ₪249
לרכישת הקורס
כולל:
181 שעות
סטודנטים יקרים הקורס שלנו מכיל מבוא בסיסי לנושא טופולגיה, לא מעבר לזה.
אין לנו מענה לכל השאלות שתקבלו בנושא זה בתרגילי הבית.
תוכן הקורס
3 לחץ על העגלה להוספת התוכן המבוקש
  • פרק 1 - מבוא מתמטי לקורס
    קשרים וכמתים לוגיים, קבוצה, איבר של קבוצה, שייכות לקבוצה, שוויון בין קבוצות, קבוצה סופית, קבוצה אינסופית, הקבוצה הריקה, תת קבוצה, מספרים טבעיים, מספרים שלמים, מספרים רציונליים, מספרים אי רציונליים, מספרים ממשיים, ציר המספרים, קטעים על ציר המספרים, איחוד וחיתוך קבוצות, הפרש קבוצות, המשלים של קבוצה, סביבה של נקודה, נקודה פנימית, נקודה חיצונית, נקודת שפה, המשפט היסודי של האריתמטיקה, קבוצות חסומות וקבוצות לא חסומות, חסם תחתון (אינפימום) של קבוצה, חסם עליון (סופרמום) של קבוצה , מינימום ומקסימום של קבוצה, אקסיומת השלמות (אקסיומת החסם העליון), משפט ארכימדס, תכונת ארכימדס, קיום ויחידות הערך השלם, צפיפות (של הממשיים, הרציונליים והאי-רציונליים), סימן הסכימה, סכומים מפורסמים, אינדוקציה, אי שוויונים מפורסמים, פתרון אי-שוויונים, עצרת, המקדם הבינומי, הבינום של ניוטון, משולש פסקל, שדה, שדה שלם.

  • פרק 2 - הפונקציה הממשית - תכונות בסיסיות ופונקציות נפוצות
    מהי פונקציה, תחום הגדרה של פונקציה, תיאור גרפי של פונקציה, עליה וירידה של פונקציה, פונקציה מונוטונית, חיוביות ושליליות של פונקציה, פונקציה חסומה, פונקציה לינארית, פונקציה ריבועית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציה חזקה, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים ומתיחות של פונקציה, הפונקציות הטריגונומטריות, הפונקציות הטריגונומטריות ההפוכות, הפונקציות ההיפרבוליות, הפונקציות ההיפרבוליות ההפוכות, הצגה פרמטרית של פונקציה, הצגה פולרית של עקום.

    זמן: 5:08 שעות
  • פרק 3 - הפונקציה הממשית - תכונות מתקדמות
    תחום הגדרה של פונקציה, הרכבת פונקציות, פונקציה חד- חד ערכית, הפונקציה ההפוכה, תמונה של פונקציה, טווח של פונקציה, פונקציה על, פונקציה זוגית ופונקציה אי-זוגית, פונקציה מחזורית, פונקציה מפוצלת/תפר/מוטלאת, פונקציה אלמנטרית.

  • פרק 4 - גבול של פונקציה
    טכניקות לחישוב גבול של פונקציה, הצבה, פירוק לגורמים, הכפלה בצמוד, שאיפה לאינסוף, פונקציה השואפת לאינסוף, כלל הסנדוויץ , הגבול של אוילר, גבול לפונקציה מפוצלת, גבול לפי הגדרה

  • פרק 5 - רציפות של פונקציה - משפט ערך הביניים
    פונקציה רציפה, אי-רציפות מסוג ראשון, אי-רציפות מסוג שני, אי-רציפות סליקה, משפט ערך הביניים של קושי (הכללי), משפט ערך הביניים בגרסה השימושית, נקודת שבת, הגדרת רציפות על ידי גבול, הגדרת רציפות בעזרת אפסילון-דלתא, הגדרת רציפות בעזרת סדרות, שמונה משפטים הקשורים לרציפות (משפטי ויירשטראס ועוד), תנאי ליפשיץ, פונקציית דיריכלה, שיטת החצייה למציאת פתרון מקורב של משוואה.

  • פרק 6 - הגדרת הנגזרת - גזירות של פונקציה - נגזרות חד-צדדיות
    הגדרת הנגזרת, פונקציה גזירה, גזירות של פונקציה, משמעות הנגזרת, משיק אנכי, חוד, נגזרות חד צדדיות, נגזרת מימין, נגזרת משמל.

  • פרק 7 - חישוב נגזרת של פונקציה
    נגזרת הפונקציות היסודיות, נגזרת סכום הפרש מכפלה ומנה, נגזרת פונקציה מורכבת (כלל השרשרת), נגזרת פונקציה עם פרמטר, הנגזרת השנייה, נגזרת פונקציה בחזקת פונקציה, נגזרת פונקציה סתומה, גזירה לוגריתמית.

  • פרק 8 - משיק, נורמל, נוסחת הקירוב הליניארי
    משיק, שיפוע של פונקציה, הזווית בין משיק לציר x, משיק אנכי, בעיות משיקים ללא שימוש בנוסחת המשיק, בעיות משיקים עם שימוש בנוסחת המשיק, הנורמל, זווית בין שתי עקומות, נוסחת הקירוב הליניארי (הדיפרנציאל השלם).

  • פרק 9 - כלל לופיטל
    שימוש בכלל לופיטל לחישוב גבול מהורה אפס חלקי אפס, אינסוף חלקי אינסוף, אפס כפול אינסוף, אחד בחזקת אינסוף, אפס בחזקת אפס, אינסוףבחזקת אפס, אינסוף פחות אינסוף, חישוב גבול במקרה שלופיטל נכשל

  • פרק 10 - חקירת פונקציה
    תחום הגדרה, זוגיות, חיתוך עם הצירים, נקודות קיצון, משפט פרמה, תחומי עליה וירידה, נקודות פיתול, תחומי קמירות וקעירות, אסימפטוטה אנכית, אסימפטוטה אופקית, אסימפטוטה משופעת, גרף, חקירה של פולינום, פונקציה רציונלית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציית שורש, פונקציה טריגונומטרית, פונקציה טריגונומטרית הפוכה, פונקצית ערך מוחלט, פונקציה לא גזירה.

  • פרק 11 - מינימום ומקסימום מוחלטים לפונקציה
    הגדרת קיצון מקומי וקיצון מוחלט (גלובלי) לפונקציה. מציאת קיצון מוחלט בקטע סגור, מציאת קיצון מוחלט בקטע פתוח, הוכחת אי שוויונים.

  • פרק 12 - אינטגרלים מיידיים

  • פרק 13 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''

  • פרק 14 - אינטגרלים בשיטת אינטגרציה בחלקים

  • פרק 15 - אינטגרלים בשיטת ההצבה

  • פרק 16 - אינטגרלים של פונקציות רציונליות

  • פרק 17 - אינטגרלים טריגונומטריים והצבות טריגונומטריות
    מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונומטרי על ידי הצבה, פתרון אינטגרל עם שורשים על ידי הצבה טריגונומטרית, חישוב שטחים בין פונקציות טריגונומטריות.

  • פרק 18 - האינטגרל המסוים, אינטגרביליות לפי רימן ולפי דארבו
    האינטגרל מסוים, הנוסחה היסודית של החדו"א, המשמעות הגיאומטרית של האינטגרל המסוים, כללי האינטגרל המסוים, האינטגרל המסוים ושיטות אינטגרציה, תכונת המונוטוניות של האינטגרל המסוים, אי שוויונות עם האינטגרל המסוים, סכום רימן, הסוגים השונים של סכומי רימן, אינטגרביליות לפי רימן, חישוב אינטגרל מסוים לפי ההגדרה של רימן, משפטים חשובים הקשורים לאינטגרביליות, אינטגרביליות לפי דארבו (חלוקה של קטע סגור, סכום דארבו עליון ותחתון, אינטגרל תחתון ואינטגרל עליון, האינטגרל המסוים ואינטגרביליות לפי דארבו, עידון של חלוקה).

  • פרק 19 - שימושי האינטגרל המסויים (שטח-אורך קשת)
    חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.

  • פרק 20 - המשפט היסודי של החדו"א, משפטי הערך הממוצע לאינטגרלים

  • פרק 21 - אינטגרלים לא אמיתיים
    אינטגרלה לא אמיתי (מוכלל), שימושים של אינטגרלים לא אמיתיים, מבחני התכנסות לאינטגרלים, מבחן ההשוואה, מבחן ההשוואה הגבולי, התכנסות בהחלט, מבחן דיריכלה, התכנסות בתנאי

  • פרק 22 - משוואות מסדר ראשון
    מהי משוואה דיפרנציאלית, משוואה פרידה (משוואה הניתנת להפרדת משתנים), משוואה הומוגנית, משוואה מהצורה ax+by+c)dx+(dx+ey+f)dy=0) , משוואה מדויקת, גורם אינטגרציה, משוואה לינארית (פתרון לפי נוסחה), משוואה לינארית (פתרון לפי וריאציית פרמטרים), משוואת ברנולי, משוואת ריקטי, משוואות הנפתרות על ידי הצבות שונות ומשונות, משפט הקיום והיחידות למשוואה מסדר ראשון על שם פיאנו ופיקארד, משפט הקיום והיחידות למשוואה לינארית מסדר ראשון, שיטת האטרציות של פיקארד (שיטת הקרובים העוקבים), משפט הקיום והיחידות בגרסת ליפשיץ, משפט הקיום והיחידות המורחב, פתרון גרפי בשיטת שדה כיוונים (שדה השיפועים), פתרון נומרי בשיטת אויילר, משוואה מסדר ראשון וממעלה גבוהה.

  • פרק 23 - שימושים של משוואות דיפרנציאליות
    בעיות גיאומטריות, משפחת עקומות אורתוגונליות, בעיות גדילה ודעיכה, זמן מחצית החיים, בעיות תערובת, החוק השני של ניוטון, חוק הקירור של ניוטון, בעיות קצב שינוי.

  • פרק 24 - זהויות טריגונומטריות
    זהויות יסוד, ערכי הפונקציות הטריגונומטריות של זוויות מיוחדות, הגדרת מעגל היחידה, זהויות של מעגל היחידה הטריגונומטרי, זהויות עבור זוויות הגדולות מ-360 מעלות, זהויות של סכום והפרש זוויות, זהויות של זווית כפולה, זהויות של סכום והפרש פונקציות.

  • פרק 25 - חשבון דיפרנציאלי - חקירת פונקציות טריגונומטריות
    נגזרות טריגונומטריות, זוגיות של פונקציה, מחזוריות של פונקציה, שאלות עם גזירה של פונקציה, שאלות עם משיקים בפונקציות טריגונומטריות, מציאת תחום הגדרה של פונקציות טריגונומטריות, מציאת נקודות קיצון של פונקציות טריגונומטריות, אסימפטוטות עם פונקציות טריגונומטריות, נקודות פיתול ותחומי קמירות וקעירות של פונקציות טריגונומטריות, חקירת פונקציה טריגונומטרית.

  • פרק 26 - טריגונומטריה במשולש ישר זווית
    ארבעת הפונקציות הטריגונומטריות: סינוס, קוסינוס, טנגנס וקוטנגנס. שאלות במשולשים הנפתרות ע"י שימוש בטריגונומטריה

  • פרק 27 - משוואות טריגונומטריות
    מהי משוואה טריגונומטרית, צורת פתרון של סינוס, של קוסינוס ושל טנגנס, פתרונות כלליים של משוואות טריגונומטריות, משוואות הנפתרות ע"י שימוש בזהויות יסוד, משוואות הנפתרות ע"י חלוקה בקוסינוס, משוואות הנפתרות ע"י טכניקה אלגברית, משוואות עם פתרון בתחום נתון, משוואות עם זוויות ברדיאנים.

  • פרק 28 - משוואות ואי-שוויונים מעריכיים
    מהי משוואה מעריכית, כיצד לפתור משוואה מעריכית, מערכת משוואות מעריכיות, אי שוויונים מעריכיים.

  • פרק 29 - חוקי הלוגריתמים, משוואות ואי-שוויונים לוגריתמים
    מהי משוואה לוגריתמית, כיצד לפתור משוואה לוגריתמית, משוואת לוגריתמיות הנפתרות ע"י הגדרת הלוגריתם, חוקי הלוגריתמים, משוואות הנפתרות ע"י שימוש בחוקי הלוגריתמים, משוואות הנפתרות ע"י הוצאת לוג משני אגפי המשוואה, מערכת משוואות לוגריתמיות, מערכת משוואות לוגריתמיות ומעריכיות, אי שוויונים לוגריתמים.

  • פרק 30 - משוואות ליניאריות מסדר שני
    משוואה חסרה - שיטת הורדת סדר המשוואה, משוואה לינארית, הומוגנית, עם מקדמים קבועים, עקרון הסופרפוזיציה, שיטת השוואת מקדמים, שיטת וריאציית הפרמטרים, משוואת אוילר, שיטת דאלמבר - שיטת הפתרון השני, נוסחת אבל, הוורונסקיאן ושימושיו, משפט הקיום והיחידות למשוואה לינארית מסדר שני, השיטה האופרטורית.

  • פרק 31 - חשבון אינטגרלי - האינטגרל המסוים וחישובי שטחים
    האינטגרל המסוים, חישובי שטחים יסודיים, שטח מתחת לציר איקס, חישובי שטחים בין שתי פונקציות, חישובי שטחים מורכבים, חישובי שטחים עם פרמטרים, חישובי שטחים כאשר נתונה הנגזרת, חישובי שטחים עם פונקציה רציונאלית, עם פונקצית שורש ועם פונקציות טריגונומטריות, חישובי שטחים שבין גרף הנגזרת והצירים

  • פרק 32 - חשבון אינטגרלי - חישובי נפחים של גופים ובעיות קיצון עם אינטגרלים
    חישובי נפחים של גופים, בעיות קיצון עם אינטגרלים

  • פרק 33 - חשבון אינטגרלי - פונקציה מעריכית, לוגריתמית וחזקה
    האינטגרל הכללי של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי, האינטגרל המסוים של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי.

  • פרק 34 - הוכחות של משפטים נבחרים בקורס