אל תפספסו את ההצעה הכי משתלמת שלנו!!!
מנוי חופשי לכל הקורסים שלכם
בטח, ספרו לי עוד!
שיטות אנליטיות במדעי הקוגניציה
מחיר הקורס: ₪249
לרכישת הקורס
כולל:
150 שעות
תוכן הקורס
3 לחץ על העגלה להוספת התוכן המבוקש
  • פרק 1 - סדרות
    מהי סדרה, גבול של סדרה, סדרה עולה וסדרה יורדת, סדרה חסומה, חסם עליון, חסם תחתון, סופרימום, אינפימום, אריתמטיקה של גבולות, הגבול של אוילר, כלל הסנדוויץ', כלל המנה, כלל השורש, סדרה רקורסיבית, חישוב גבול לפי ההגדרה, שלילת הגדרת הגבול, הגדרת הגבול לפי היינה, תת-סדרה, גבול חלקי, משפט בולצאנו וירשטראס, משפט שטולץ, מבחן קושי להתכנסות סדרות.

  • פרק 2 - מבוא מתמטי לקורס
    קשרים וכמתים לוגיים, קבוצה, איבר של קבוצה, שייכות לקבוצה, שוויון בין קבוצות, קבוצה סופית, קבוצה אינסופית, הקבוצה הריקה, תת קבוצה, מספרים טבעיים, מספרים שלמים, מספרים רציונליים, מספרים אי רציונליים, מספרים ממשיים, ציר המספרים, קטעים על ציר המספרים, איחוד וחיתוך קבוצות, הפרש קבוצות, המשלים של קבוצה, סביבה של נקודה, נקודה פנימית, נקודה חיצונית, נקודת שפה, המשפט היסודי של האריתמטיקה, קבוצות חסומות וקבוצות לא חסומות, חסם תחתון (אינפימום) של קבוצה, חסם עליון (סופרמום) של קבוצה , מינימום ומקסימום של קבוצה, אקסיומת השלמות (אקסיומת החסם העליון), משפט ארכימדס, תכונת ארכימדס, קיום ויחידות הערך השלם, צפיפות (של הממשיים, הרציונליים והאי-רציונליים), סימן הסכימה, סכומים מפורסמים, אינדוקציה, אי שוויונים מפורסמים, פתרון אי-שוויונים, עצרת, המקדם הבינומי, הבינום של ניוטון, משולש פסקל, שדה, שדה שלם.

  • פרק 3 - גבול של פונקציה
    טכניקות לחישוב גבול של פונקציה, הצבה, פירוק לגורמים, הכפלה בצמוד, שאיפה לאינסוף, פונקציה השואפת לאינסוף, כלל הסנדוויץ , הגבול של אוילר, גבול לפונקציה מפוצלת, גבול לפי הגדרה

  • פרק 4 - חישוב נגזרת של פונקציה
    נגזרת הפונקציות היסודיות, נגזרת סכום הפרש מכפלה ומנה, נגזרת פונקציה מורכבת (כלל השרשרת), נגזרת פונקציה עם פרמטר, הנגזרת השנייה, נגזרת פונקציה בחזקת פונקציה, נגזרת פונקציה סתומה, גזירה לוגריתמית.

  • פרק 5 - רציפות של פונקציה - משפט ערך הביניים
    פונקציה רציפה, אי-רציפות מסוג ראשון, אי-רציפות מסוג שני, אי-רציפות סליקה, משפט ערך הביניים של קושי (הכללי), משפט ערך הביניים בגרסה השימושית, נקודת שבת, הגדרת רציפות על ידי גבול, הגדרת רציפות בעזרת אפסילון-דלתא, הגדרת רציפות בעזרת סדרות, שמונה משפטים הקשורים לרציפות (משפטי ויירשטראס ועוד), תנאי ליפשיץ, פונקציית דיריכלה, שיטת החצייה למציאת פתרון מקורב של משוואה.

  • פרק 6 - כלל לופיטל
    שימוש בכלל לופיטל לחישוב גבול מהורה אפס חלקי אפס, אינסוף חלקי אינסוף, אפס כפול אינסוף, אחד בחזקת אינסוף, אפס בחזקת אפס, אינסוףבחזקת אפס, אינסוף פחות אינסוף, חישוב גבול במקרה שלופיטל נכשל

  • פרק 7 - טורי טיילור - מקלורן
    סימן הסכימה, טור טיילור, טור מקלורן, תחום התכנסות של טור טיילור, שימושים של טורי טיילור - חישוב סכום של טור, חישוב גבולות, חישוב מקורבים בעזרת השארית של לייבניץ, חישובים מקורבים של אינטגרלים, חישובים מקורבים בעזרת נוסחת השארית של לגרנז'.

  • פרק 8 - אינטגרלים מיידיים

  • פרק 9 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''

  • פרק 10 - אינטגרלים בשיטת אינטגרציה בחלקים

  • פרק 11 - אינטגרלים בשיטת ההצבה

  • פרק 12 - אינטגרלים של פונקציות רציונליות

  • פרק 13 - אינטגרלים טריגונומטריים והצבות טריגונומטריות
    מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונומטרי על ידי הצבה, פתרון אינטגרל עם שורשים על ידי הצבה טריגונומטרית, חישוב שטחים בין פונקציות טריגונומטריות.

  • פרק 14 - הגדרת הנגזרת - גזירות של פונקציה - נגזרות חד-צדדיות
    הגדרת הנגזרת, פונקציה גזירה, גזירות של פונקציה, משמעות הנגזרת, משיק אנכי, חוד, נגזרות חד צדדיות, נגזרת מימין, נגזרת משמל.

  • פרק 15 - הפונקציה הממשית - תכונות בסיסיות ופונקציות נפוצות
    מהי פונקציה, תחום הגדרה של פונקציה, תיאור גרפי של פונקציה, עליה וירידה של פונקציה, פונקציה מונוטונית, חיוביות ושליליות של פונקציה, פונקציה חסומה, פונקציה לינארית, פונקציה ריבועית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציה חזקה, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים ומתיחות של פונקציה, הפונקציות הטריגונומטריות, הפונקציות הטריגונומטריות ההפוכות, הפונקציות ההיפרבוליות, הפונקציות ההיפרבוליות ההפוכות, הצגה פרמטרית של פונקציה, הצגה פולרית של עקום.

    זמן: 5:08 שעות
  • פרק 16 - הפונקציה הממשית - תכונות מתקדמות
    תחום הגדרה של פונקציה, הרכבת פונקציות, פונקציה חד- חד ערכית, הפונקציה ההפוכה, תמונה של פונקציה, טווח של פונקציה, פונקציה על, פונקציה זוגית ופונקציה אי-זוגית, פונקציה מחזורית, פונקציה מפוצלת/תפר/מוטלאת, פונקציה אלמנטרית.

  • פרק 17 - כלל השרשרת בפונקציות של מספר משתנים

  • פרק 18 - קיצון ואוכף לפונקציה של שני משתנים

  • פרק 19 - קיצון של פונקציה רבת משתנים (רמה מתקדמת) - הריבועים הפחותים

  • פרק 20 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')

  • פרק 21 - קיצון של פונקציה של שלושה משתנים תחת אילוצים

  • פרק 22 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה
    מציאת מקסימום ומינימום מוחלטים/גלובליים לפונקציה של שני משתנים בקבוצה סגורה וחסומה כגון משולש, טרפז, עיגול וכו

  • פרק 23 - אינטגרלים כפולים
    אינטגרלים כפולים, החלפת סדר אינטגרציה באינטגרל כפול

  • פרק 24 - שימושי האינטגרל הכפול
    חישוב שטחים בעזרת אינטגרל כפול, חישוב נפח גוף עם אינטגרל כפול, חישוב מסה של לוח דק, חישוב מרכז כובד של לוח דק, חישוב מומנט התמד של לוח דק, חישוב שטח פנים של משטח.

  • פרק 25 - אינטגרלים כפולים בקואורדינטות קוטביות (פולריות)

  • פרק 26 - החלפת משתנים באינטגרל כפול (יעקוביאן)

  • פרק 27 - פונקציות של מספר משתנים - מבוא, קווי גובה, משטחי רמה
    פונקציה של מספר משתנים, תחום הגדרה, קווי גובה, משטחי רמה.

  • פרק 28 - נגזרות חלקיות דיפרנציאבליות
    נגזרות חלקיות מסדר ראשון, נגזרות חלקיות מסדר שני, נגזרות חלקיות לפי ההגדרה, דיפרנציאביליות

  • פרק 29 - נגזרת מכוונת וגרדיאנט
    גרדינט, נגזרת מכוונת, משמעות גיאומטרית של נגזרת מכוונת וגרדינט, משפטים הקשורים לנגזרת מכוונת וגרדינט, נגזרת מכוונת לפי ההגדרה, ישר פרמטרי משיק למשטח.

  • פרק 30 - גבולות ורציפות של פונקציות של מספר משתנים
    טכניקות לחישוב גבול של פונקציה בשני משתנים, טכניקות להוכחת אי קיום גבול לפונקציה של שני משתנים, גבול לפי ההגדרה לפונקציה של שני משתנים. רציפות לפונקציה של שני משתנים, משפטי רציפות לפונקציה של שני משתנים (ויירשטראס וערך הביניים).

  • פרק 31 - קווים ותחומים במישור, משטחים וגופים במרחב
    בפרק זה נכיר את כל הקוים במישור (ישר, מעגל, אליפסה, פרבולה, היפרבולה) ואת התחומים החסומים בהם בהצגה אלגברית, פרמטרית ופולרית. בהמשך נכיר את המשטחים המפורסמים במרחב (מישור, ספירה, גליל אליפטי, חרוט אליפטי, היפרבולואיד חד יריעתי, היפרבולואיד דו יריעתי, פרבולואיד אליפטי, פרבולואיד היפרבולי) בהצגה אלגברית והצגה פרמטרית. לבסוף נתמקד בגופים במרחב בקואורדינטות קרטזיות, גליליות וכדוריות.

  • פרק 32 - יסודות ההסתברות

  • פרק 33 - פעולות בין מאורעות (חיתוך ואיחוד) - מאורעות זרים ומכילים

  • פרק 34 - הסתברות מותנית-במרחב מדגם אחיד

  • פרק 35 - דיאגרמת עצים - נוסחת בייס ונוסחת ההסתברות השלמה

  • פרק 36 - תלות ואי תלות בין מאורעות

  • פרק 37 - המשתנה המקרי הבדיד - פונקציית ההסתברות

  • פרק 38 - המשתנה המקרי הבדיד - תוחלת - שונות וסטיית תקן

  • פרק 39 - המשתנה המקרי הבדיד- טרנספורמציה לינארית

  • פרק 40 - התפלגויות בדידות מיוחדות -התפלגות בינומית

  • פרק 41 - התפלגויות בדידות מיוחדות- התפלגות פואסונית

  • פרק 42 - המשתנה המקרי הרציף- התפלגויות כלליות (שימוש באינטגרלים)

  • פרק 43 - התפלגויות רציפות מיוחדות- התפלגות מעריכית

  • פרק 44 - התפלגויות רציפות מיוחדות - התפלגות נורמלית

  • פרק 45 - התפלגות הדגימה ומשפט הגבול המרכזי