פרק 1 - דטרמיננטות
▼
הגדרת דטרמיננטה, כללי דטרמיננטות, כלל קרמר, מטריצה צמודה קלאסית, חישוב המטריצה ההופכית בעזרת דטרמיננטות, שימושי הדטרמיננטה.
פרק 2 - ערכים עצמיים-וקטורים עצמיים-לכסון מטריצות - דימיון
▼
ערכים עצמיים, וקטורים עצמיים, מטריצה אופינית, פולינום אופייני, ריבוב אלגברי וריבוב גיאומטרי של ערך עצמי, מרחב עצמי, לכסון מטריצות, חזקה של מטריצה, פולינום מינימלי, משפט קיילי המילטון, דמיון מטריצות, מטריצות דומות.
פרק 3 - מרחבי מכפלה פנימית
▼
מכפלה פנימית, מרחב מכפלה פנימית, נורמה של וקטור, וקטור יחידה, נירמול של וקטור, מרחק בין וקטורים, אי שוויון קושי שוורץ, אי שוויון המשולש, זווית בין וקטורים, אורתוגונליות, משלים אורתוגונלי.
פרק 4 - קבוצות אורתוגונליות, בסיסים אורתוגונליים, התהליך של גרם-שמידט
▼
קבוצה אורתוגונלית, בסיס אורתוגונלי, בסיס אורתונורמלי, שוויון פרסבל, אי-שוויון בסל, ההיטל של וקטור על וקטור, ההיטל של וקטור על תת-מרחב, תהליך גרהם-שמידט.
פרק 5 - מטריצות אורתוגונליות, העתקות אורתוגונליות, לכסון אורתוגונלי
▼
מטריצות אורתוגונליות, מטריצת סיבוב, מטריצת שיקוף, העתקות אורתוגונליות, העתקת שיקוף, העתקת סיבוב, דמיון אורתוגונלי, לכסון אורתוגונלי.