פרק 1 - פתרון וחקירת מערכת משוואות ליניאריות
▼
מערכת משוואות לינאריות, מספר הפתרונות של מערכת משוואות לינאריות, מערכת משוואות לינאריות מדורגת, תהליך הדירוג/החילוץ של גאוס לפתרון מערכת משוואות לינאריות, מערכת משוואות ליניאריות הומוגנית, הקשר שבין מערכת משוואות לינאריות למערכת ההומוגנית המתאימה לה, שימושים של מערכות משוואות לינאריות.
פרק 2 - מטריצות
▼
הגדרת מטריצה, מטריצה ריבועית, מטריצת האפס, מטריצה היחידה, מטריצה משולשת עליונה, מטריצה משולשת תחתונה, מטריצה אלכסונית, מטריצה סימטרית, מטריצה אנטי-סימטרית, כפל מטריצה בסקלר, חיבור וחיסור מטריצות, כפל מטריצות, העקבה של מטריצה, המטריצה המשוחלפת, המטריצה ההופכית, דרגה של מטריצה, הצגת מערכת משוואות בעזרת כפל מטריצות, פתרון מערכת משוואות בעזרת המטריצה ההופכית, מטריצה אלמנטרית, פירוק LU, רגרסיה לינארית.
פרק 3 - דטרמיננטות
▼
הגדרת דטרמיננטה, כללי דטרמיננטות, כלל קרמר, מטריצה צמודה קלאסית, חישוב המטריצה ההופכית בעזרת דטרמיננטות, שימושי הדטרמיננטה.
פרק 4 - וקטורים גיאומטרים
▼
המרחב התלת ממדי, וקטור תלת ממדי, אמצע קטע, חלוקת קטע ביחס נתון, וקטור דרך שתי נקודות, גודל וכיוון של וקטור, שיוויון בין וקטורים, פעולות חשבון בין וקטורים, מכפלה סקלרית, זוית בין וקטורים, נורמה של וקטור, נירמול של וקטור, מרחק בין וקטורים, אורתוגונליות, מכפלה וקטורית ושימושיה, מכפלה מעורבת ושימושיה.
פרק 5 - וקטורים אלגברים - גיאומטריה אנליטית במרחב
▼
מהו וקטור אלגברי, וקטור שמוצאו אינו בראשית הצירים, אמצע קטע וחלוקת קטע ביחס נתון, מכפלה סקלרית וגודל של וקטור בהצגה אלגברית, הצגה פרמטית של ישר, מצב הדדי בין ישרים במרחב, הצגה פרמטרית של מישור, משוואת מישור, מצב הדדי בין מישורים במרחב, ישר חיתוך בין שני מישורים, זווית בין שני ישרים, זווית בין ישר ומישור, זווית בין שני מישורים, מרחק בין שתי נקודות במרחב, מרחק בין נקודה לישר, מרחק בין נקודה למישור, מרחק בין ישר ומישור, מרחק בין מישורים מקבילים, מרחק בין ישרים מצטלבים.
פרק 6 - חוקי הלוגריתמים, משוואות ואי-שוויונים לוגריתמים
▼
מהי משוואה לוגריתמית, כיצד לפתור משוואה לוגריתמית, משוואת לוגריתמיות הנפתרות ע"י הגדרת הלוגריתם, חוקי הלוגריתמים, משוואות הנפתרות ע"י שימוש בחוקי הלוגריתמים, משוואות הנפתרות ע"י הוצאת לוג משני אגפי המשוואה, מערכת משוואות לוגריתמיות, מערכת משוואות לוגריתמיות ומעריכיות, אי שוויונים לוגריתמים.
פרק 7 - בעיות גדילה ודעיכה
▼
מציאת כמות סופית, מציאת כמות התחלתית, מציאת אחוז הגדילה או הדעיכה, מציאת הזמן, שאלות מסכמות בגדילה ודעיכה.
פרק 8 - סדרות
▼
מהי סדרה ,נוסחת איבר כללי של סדרה חשבונית, נוסחת סכום של סדרה חשבונית, נוסחת איבר כללי של סדרה הנדסית, נוסחת סכום של סדרה הנדסית, סדרה בעלת מספר זוגי ואי-זוגי של איברים, סדרה הנדסית אינסופית מתכנסת, סדרות כלליות, סדרות נסיגה, סדרות מעורבות.
פרק 9 - הפונקציה הממשית ומבוא לתורת הקבוצות
▼
פונקציה - הגדרה ותכונות בסיסיות, הפונקציה הלינארית, הפונקציה הריבועית, הפונקציה המעריכית, הפונקציה הלוגריתמית, פונקציית החזקה עבור מעריכים שונים, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים מתיחות וכיווצים של פונקציה, תחום הגדרה של פונקציה, הרכבת פונקציות, הפונקציה ההפוכה, פונקציה זוגית ופונקציה אי זוגית, פונקציה מפוצלת, קשרים וכמתים לוגיים, קבוצה, איבר של קבוצה, שייכות לקבוצה,
שוויון בין קבוצות, קבוצה סופית, קבוצה אינסופית, הקבוצה הריקה, תת קבוצה.
פרק 10 - גבול של פונקציה
▼
הצבה, צמצום, הכפלה בצמוד, פונקציה שואפת לאינסוף,
איקס שואף לאינסוף, הגבול של אוילר, כלל הסנדוויץ, גבול של פונקציה מפוצלת, גבול לפי הגדרה.
פרק 11 - רציפות של פונקציה - משפט ערך הביניים
▼
רציפות של פונקציה, משפט ערך הביניים, שיטת החצייה.