פרק 1 - אינטגרלים מיידיים
פרק 2 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''
פרק 3 - אינטגרלים בשיטת אינטגרציה בחלקים
פרק 4 - אינטגרלים בשיטת ההצבה
פרק 5 - אינטגרלים של פונקציות רציונליות
פרק 6 - אינטגרלים טריגונומטריים והצבות טריגונומטריות
▼
מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונומטרי על ידי הצבה, פתרון אינטגרל עם שורשים על ידי הצבה טריגונומטרית, חישוב שטחים בין פונקציות טריגונומטריות.
פרק 7 - שימושי האינטגרל המסויים (שטח-אורך קשת)
▼
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.
פרק 8 - פונקציות של מספר משתנים - מבוא, קווי גובה, משטחי רמה
▼
פונקציה של מספר משתנים, תחום הגדרה, קווי גובה, משטחי רמה.
פרק 9 - נגזרות חלקיות
▼
נגזרות חלקיות מסדר ראשון, נגזרות חלקיות מסדר שני, נגזרות חלקיות לפי ההגדרה, דיפרנציאביליות
פרק 10 - כלל השרשרת בפונקציות של מספר משתנים
פרק 11 - פונקציות סתומות - שימושים גיאומטריים
▼
גזירה סתומה מסדר ראשון ושני, גזירה סתומה של מערכת משוואות, משפט הפונקציה הסתומה - הפן התיאורטי, מישור משיק למשטח, ישר ניצב למשטח, ישר משיק לעקום, מישור נורמלי לעקום, ישר משיק ומישור נורמלי לעקום חיתוך של שני משטחים, מישור משיק וישר ניצב למשטח פרמטרי .
פרק 12 - נוסחת טיילור לפונקציה של שני משתנים והדיפרנציאל השלם
▼
נוסחת טיילור לפונקציה של שני משתנים, הדיפרנציאל השלם (נוסחת הקירוב הלינארי).
פרק 13 - קיצון ואוכף לפונקציה של שני משתנים
פרק 14 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')
פרק 15 - קיצון של פונקציה של שלושה משתנים תחת אילוצים
פרק 16 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה
▼
מציאת מקסימום ומינימום מוחלטים/גלובליים לפונקציה של שני משתנים בקבוצה סגורה וחסומה כגון משולש, טרפז, עיגול וכו
פרק 17 - טורי טיילור - מקלורן
▼
טור טיילור, טור מקלורן, תחום התכנסות של טור טיילור, חישובים מקורבים בעזרת טורי טיילור.