אל תפספסו את ההצעה הכי משתלמת שלנו!!!
מנוי חופשי לכל הקורסים שלכם
בטח, ספרו לי עוד!
חשבון אינפי 2
מחיר הקורס: ₪249
לרכישת הקורס
כולל:
84 שעות
תוכן הקורס
3 לחץ על העגלה להוספת התוכן המבוקש
  • פרק 1 - האינטגרל המסוים, אינטגרביליות לפי רימן
    האינטגרל מסוים, הנוסחה היסודית של החדו"א, המשמעות הגיאומטרית של האינטגרל המסוים, כללי האינטגרל המסוים, האינטגרל המסוים ושיטות אינטגרציה, תכונת המונוטוניות של האינטגרל המסוים, אי שוויונות עם האינטגרל המסוים, סכום רימן, הסוגים השונים של סכומי רימן, אינטגרביליות לפי רימן, חישוב אינטגרל מסוים לפי ההגדרה של רימן, משפטים חשובים הקשורים לאינטגרביליות, אינטגרביליות לפי דארבו (חלוקה של קטע סגור, סכום דארבו עליון ותחתון, אינטגרל תחתון ואינטגרל עליון, האינטגרל המסוים ואינטגרביליות לפי דארבו, עידון של חלוקה).

  • פרק 2 - שימושי האינטגרל המסויים (שטח-אורך קשת)
    חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.

  • פרק 3 - המשפט היסודי של החדו"א

  • פרק 4 - טורים עם איברים קבועים
    סימן הסכימה, טורים, טור מתכנס וטור מתבדר, טור גיאומטרי, טור טלסקופי, הטור ההרמוני, תכונות אלגבריות של טורים, מבחן ההתבדרות, מבחן האינטגרל, מבחן ההשוואה הגבולי, מבחן ההשוואה, מבחן המנה (של ד'אלמבר), מבחן השורש (של קושי), מבחן ראבה, מבחן לייבניץ, טור חסום, מבחן דיריכלה, מבחן אבל, התכנסות בהחלט והתכנסות בתנאי.

  • פרק 5 - סדרות פונקציות, טורי פונקציות וטורי חזקות
    סדרת פונקציות, התכנסות נקודתית של סדרת פונקציות, התכנסות במידה שווה של סדרת פונקציות, טור פונקציות, התכנסות של טור פונקציות, התכנסות במידה שווה של טור פונקציות, טורי חזקות, התכנסות של טורי חזקות, פיתוח פונקציה לטור חזקות, גזירה ואינטגרציה של טורי חזקות, גזירה ואינטגרציה איבר איבר, סכום של טור פונקציות, סכום של טור עם איברים קבועים.

  • פרק 6 - טורי טיילור - מקלורן
    טור טיילור, טור מקלורן, תחום התכנסות של טור טיילור, חישובים מקורבים בעזרת טורי טיילור.

  • פרק 7 - קווים ותחומים במישור, משטחים וגופים במרחב
    בפרק זה נכיר את כל הקוים במישור (ישר, מעגל, אליפסה, פרבולה, היפרבולה) ואת התחומים החסומים בהם בהצגה אלגברית, פרמטרית ופולרית. בהמשך נכיר את המשטחים המפורסמים במרחב (מישור, ספירה, גליל אליפטי, חרוט אליפטי, היפרבולואיד חד יריעתי, היפרבולואיד דו יריעתי, פרבולואיד אליפטי, פרבולואיד היפרבולי) בהצגה אלגברית והצגה פרמטרית. לבסוף נתמקד בגופים במרחב בקואורדינטות קרטזיות, גליליות וכדוריות.

  • פרק 8 - פונקציות של מספר משתנים - מבוא, קווי גובה, משטחי רמה
    פונקציה של מספר משתנים, תחום הגדרה, קווי גובה, משטחי רמה.

  • פרק 9 - גבולות ורציפות של פונקציות של מספר משתנים
    טכניקות לחישוב גבול של פונקציה בשני משתנים, טכניקות להוכחת אי קיום גבול לפונקציה של שני משתנים, גבול לפי ההגדרה לפונקציה של שני משתנים. רציפות לפונקציה של שני משתנים, משפטי רציפות לפונקציה של שני משתנים (ויירשטראס וערך הביניים).

  • פרק 10 - נגזרות חלקיות דיפרנציאבליות
    נגזרות חלקיות מסדר ראשון, נגזרות חלקיות מסדר שני, נגזרות חלקיות לפי ההגדרה, דיפרנציאביליות

  • פרק 11 - כלל השרשרת בפונקציות של מספר משתנים

  • פרק 12 - נגזרת מכוונת וגרדיאנט
    גרדינט, נגזרת מכוונת, משמעות גיאומטרית של נגזרת מכוונת וגרדינט, משפטים הקשורים לנגזרת מכוונת וגרדינט, נגזרת מכוונת לפי ההגדרה, ישר פרמטרי משיק למשטח.

  • פרק 13 - פונקציות סתומות - שימושים גיאומטריים
    גזירה סתומה מסדר ראשון ושני, גזירה סתומה של מערכת משוואות, משפט הפונקציה הסתומה - הפן התיאורטי, מישור משיק למשטח, ישר ניצב למשטח, ישר משיק לעקום, מישור נורמלי לעקום, ישר משיק ומישור נורמלי לעקום חיתוך של שני משטחים, מישור משיק וישר ניצב למשטח פרמטרי .

  • פרק 14 - קיצון ואוכף לפונקציה של שני משתנים

  • פרק 15 - קיצון של פונקציה רבת משתנים (רמה מתקדמת) - הריבועים הפחותים

  • פרק 16 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')

  • פרק 17 - קיצון של פונקציה של שלושה משתנים תחת אילוצים

  • פרק 18 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה
    מציאת מקסימום ומינימום מוחלטים/גלובליים לפונקציה של שני משתנים בקבוצה סגורה וחסומה כגון משולש, טרפז, עיגול וכו

  • פרק 19 - אינטגרלים כפולים
    אינטגרלים כפולים, החלפת סדר אינטגרציה באינטגרל כפול

  • פרק 20 - שימושי האינטגרל הכפול
    חישוב שטחים בעזרת אינטגרל כפול, חישוב נפח גוף עם אינטגרל כפול, חישוב מסה של לוח דק, חישוב מרכז כובד של לוח דק, חישוב מומנט התמד של לוח דק, חישוב שטח פנים של משטח.

  • פרק 21 - אינטגרלים כפולים בקואורדינטות קוטביות (פולריות)

  • פרק 22 - החלפת משתנים באינטגרל כפול (יעקוביאן)

  • פרק 23 - אינטגרלים משולשים ושימושיהם

  • פרק 24 - אינטגרלים משולשים בקואורדינטות גליליות וכדוריות

  • פרק 25 - החלפת משתנים באינטגרלים משולשים (יעקוביאן)