פרק 1 - אינטגרלים מיידיים
פרק 2 - אינטגרלים בשיטת אינטגרציה בחלקים
פרק 3 - אינטגרלים בשיטת ההצבה
פרק 4 - אינטגרלים של פונקציות רציונליות
פרק 5 - האינטגרל המסוים, אינטגרביליות לפי רימן ולפי דארבו
▼
האינטגרל מסוים, הנוסחה היסודית של החדו"א, המשמעות הגיאומטרית של האינטגרל המסוים, כללי האינטגרל המסוים, האינטגרל המסוים ושיטות אינטגרציה, תכונת המונוטוניות של האינטגרל המסוים, אי שוויונות עם האינטגרל המסוים, סכום רימן, הסוגים השונים של סכומי רימן, אינטגרביליות לפי רימן, חישוב אינטגרל מסוים לפי ההגדרה של רימן, משפטים חשובים הקשורים לאינטגרביליות, אינטגרביליות לפי דארבו (חלוקה של קטע סגור, סכום דארבו עליון ותחתון, אינטגרל תחתון ואינטגרל עליון, האינטגרל המסוים ואינטגרביליות לפי דארבו, עידון של חלוקה).
פרק 6 - שימושי האינטגרל המסויים (שטח-אורך קשת)
▼
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.
פרק 7 - שימושי האינטגרל המסויים (נפח-שטח מעטפת)
▼
חישוב נפח גוף סיבוב סביב ציר x וסביב ציר y בשיטת הדיסקות (קוולירי) ובשיטת הקליפות הגליליות, חישוב נפח גוף סיבוב סביב ישרים המקבילים לצירים, חישוב שטח מעטפת של גוף סיבוב סביב ציר x וסביב ציר y, חישוב נפח גוף שהוא אינו גוף סיבוב.
פרק 8 - המשפט היסודי של החדו"א, משפטי הערך הממוצע לאינטגרלים
פרק 9 - אינטגרלים לא אמיתיים
▼
אינטגרלה לא אמיתי (מוכלל), שימושים של אינטגרלים לא אמיתיים, מבחני התכנסות לאינטגרלים, מבחן ההשוואה, מבחן ההשוואה הגבולי, התכנסות בהחלט, מבחן דיריכלה, התכנסות בתנאי
פרק 10 - פונקציות של שני משתנים
▼
פונקציה של שני משתנים, קווי גובה (נקראים גם קווי/עקומות רמה או קווי/עקומות אדישות או עקומות שוות ערך), משטחים מפורסמים (מישור, שפת כדור, אליפסואיד, גליל אליפטי, חרוט אליפטי, היפרבולואיד, פרבולואיד).
פרק 11 - נגזרות חלקיות
פרק 12 - פונקציות הומוגניות-משפט אוילר
▼
פונרציה הומוגנית, מעבר מנקודה לנקודה בפונקציה הומוגנית ובנגזרת של פונקציה הומוגנית, משפט אוילר
פרק 13 - כלל השרשרת בפונקציות של מספר משתנים
פרק 14 - פונקציות סתומות - שימושים גיאומטריים
▼
גזירה סתומה מסדר ראשון ושני, גזירה סתומה של מערכת משוואות, משפט הפונקציה הסתומה - הפן התיאורטי, מישור משיק למשטח, ישר ניצב למשטח, ישר משיק לעקום, מישור נורמלי לעקום, ישר משיק ומישור נורמלי לעקום חיתוך של שני משטחים, מישור משיק וישר ניצב למשטח פרמטרי .
פרק 15 - קיצון ואוכף לפונקציה של שני משתנים
פרק 16 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')
פרק 17 - קיצון של פונקציה של שלושה משתנים תחת אילוצים
פרק 18 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה
▼
מציאת מקסימום ומינימום מוחלטים/גלובליים לפונקציה של שני משתנים בקבוצה סגורה וחסומה כגון משולש, טרפז, עיגול וכו
פרק 19 - פתרון וחקירת מערכת משוואות ליניאריות
פרק 20 - מטריצות