אל תפספסו את ההצעה הכי משתלמת שלנו!!!
מנוי חופשי לכל הקורסים שלכם
בטח, ספרו לי עוד!
מכינת מתמטיקה HTWK גרמניה
מחיר הקורס: ₪249
לרכישת הקורס
כולל:
343 שעות
תוכן הקורס
3 לחץ על העגלה להוספת התוכן המבוקש
  • פרק 1 - משוואות אלגבריות
    משוואה ממעלה ראשונה, מערכת שתי משוואות בשני נעלמים ממעלה ראשונה, משוואות עם אינסוף פתרונות ואף פתרון, משוואה ריבועית (משוואה ממעלה שנייה), משוואות ממעלה שלישית ומעלות גבוהות, משוואות דו ריבועיות, משוואות עם פרמטרים, משוואות עם שורשים, משוואות עם ערך מוחלט, מערכת שתי משוואות עם שני נעלמים ממעלה שנייה.

  • פרק 2 - אי שוויונים אלגבריים
    אי שוויונים ממעלה ראשונה ושנייה, אי שוויונים ממעלה גבוהה (שלישית ויותר), אי שיוויונים עם מנה, אי שיוויונים כפולים, מערכת וגם, מערכת או, מציאת תחומי הגדרה, אי שיוויונים עם ערך מוחלט.

  • פרק 3 - סדרות
    מהי סדרה ,נוסחת איבר כללי של סדרה חשבונית, נוסחת סכום של סדרה חשבונית, נוסחת איבר כללי של סדרה הנדסית, נוסחת סכום של סדרה הנדסית, סדרה בעלת מספר זוגי ואי-זוגי של איברים, סדרה הנדסית אינסופית מתכנסת, סדרות כלליות, סדרות נסיגה, סדרות מעורבות.

  • פרק 4 - אינדוקציה מתמטית
    מהי אינדוקציה, תכונות התחלקות, אינדוקציות עם איבר כללי שמורכב ממספר מחוברים, אינדוקציות שבהן איברים משתנים, שאלות הוכחה עם אינדוקציות, אינדוקציות עם סדרות, אינדוקציות עם עצרת

  • פרק 5 - גיאומטריה אנליטית - נקודה וישר
    מרחק בין נקודות, אמצע קטע, משוואת הישר, שיפוע של ישר, מציאת משוואת ישר לפי נקודה ושיפוע או שתי נקודות, חלוקת קטע ביחס נתון, מרחק בין ישרים, מרחק בין נקודה וישר.

  • פרק 6 - גיאומטריה אנליטית - המעגל
    משוואת המעגל, נקודה בתוך מעגל, מחוץ למעגל ועל היקף מעגל, מעגל המשיק לצירים, משיק למעגל, שני מעגלים

  • פרק 7 - גיאומטריה אנליטית - האליפסה והפרבולה
    האליפסה: מוקדי אליפסה וצירי אליפסה, מיתר וקוטר באליפסה, אליפסה קנונית. הפרבולה: מוקד, מדריך ורדיוס של פרבולה, משוואת הפרבולה, משיק לפרבולה, מיתר בפרבולה.

  • פרק 8 - וקטורים גיאומטריים
    מהו וקטור, העתקת וקטורים, כפל וקטור בסקלר, חיבור וחיסור וקטורים, וקטורים מקבילים ושווים, וקטורים הפורשים מישור, מכפלה סקלרית, גודל של וקטור, כפל וקטורים.

  • פרק 9 - וקטורים אלגבריים
    מהו וקטור אלגברי, וקטור שמוצאו אינו בראשית הצירים, אמצע קטע וחלוקת קטע ביחס נתון, מכפלה סקלרית וגודל של וקטור בהצגה אלגברית, הצגה פרמטית של ישר, מצב הדדי בין ישרים במרחב, הצגה פרמטרית של מישור, משוואת מישור, מצב הדדי בין מישורים במרחב, ישר חיתוך בין שני מישורים, זווית בין שני ישרים, זווית בין ישר ומישור, זווית בין שני מישורים, מרחק בין שתי נקודות במרחב, מרחק בין נקודה לישר, מרחק בין נקודה למישור, מרחק בין ישר ומישור, מרחק בין מישורים מקבילים, מרחק בין ישרים מצטלבים.

  • פרק 10 - חשבון דיפרנציאלי - נגזרות ומשיקים
    נגזרות יסודיות, מציאת שיפוע משיק לגרף פונקציה, מציאת משוואת משיק לגרף פונקציה, שאלות שונות עם משיקים.

  • פרק 11 - חשבון דיפרנציאלי - חקירת פונקצית פולינום
    פונקציה זוגית ואי-זוגית, הקשר שבין גרף הפונקציה לגרף הנגזרת, חקירת פונקצית פולינום.

  • פרק 12 - חשבון דיפרנציאלי - חקירת פונקצית מנה ושורש
    שאלות עם משיקים לפונקציות מנה ושורש, תחום הגדרה של פונקצית מנה ושורש, נקודות קיצון ותחומי עלייה וירידה של פונקצית מנה ושורש, אסימפטוטות של פונקצית מנה ושורש, נקודות פיתול ותחומי קמירות וקעירות של פונקצית מנה ושורש, חקירת פונקצית מנה ושורש, חקירת פונקציה עם פרמטר.

  • פרק 13 - חשבון דיפרנציאלי - חקירת פונקציות טריגונומטריות
    נגזרות טריגונומטריות, זוגיות של פונקציה, מחזוריות של פונקציה, שאלות עם גזירה של פונקציה, שאלות עם משיקים בפונקציות טריגונומטריות, מציאת תחום הגדרה של פונקציות טריגונומטריות, מציאת נקודות קיצון של פונקציות טריגונומטריות, אסימפטוטות עם פונקציות טריגונומטריות, נקודות פיתול ותחומי קמירות וקעירות של פונקציות טריגונומטריות, חקירת פונקציה טריגונומטרית.

  • פרק 14 - חשבון דיפרנציאלי - הזזות ומתיחות של פונקציות
    הוספת קבוע לפונקציה, הכפלת קבוע בפונקציה, הזזת פונקציה ימינה ושמאלה, מתיחה וכיווץ של פונקציה, היפוך גרף של פונקציה ביחס לציר y, ערך מוחלט של פונקציה

  • פרק 15 - חשבון דיפרנציאלי - פונקציות מעריכיות
    שאלות עם נגזרות מעריכיות, תחום הגדרה של פונקציה מעריכיות, שימושי הנגזרת עם פונקציות מעריכיות, חקירת פונקציה מעריכיות.

  • פרק 16 - חשבון דיפרנציאלי - פונקציות לוגריתמיות
    שאלות עם נגזרות לוגריתמיות, תחום הגדרה של פונקציה לוגריתמית, שימושי הנגזרת עם פונקציות לוגריתמיות, חקירת פונקציה לוגריתמית.

  • פרק 17 - חשבון דיפרנציאלי - פונקצית חזקה עם מעריך רציונאלי
    שאלות עם נגזרות של פונקצית חזקה עם מעריך רציונאלי, תחום הגדרה של של פונקצית חזקה עם מעריך רציונאלי, שימושי הנגזרת עם של פונקצית חזקה עם מעריך רציונאלי, חקירת של פונקצית חזקה עם מעריך רציונאלי.

  • פרק 18 - חשבון דיפרנציאלי - בעיות קיצון
    בעיות קיצון עם מספרים, בעיות קיצון בהנדסת המישור, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת המרחב.

  • פרק 19 - חשבון אינטגרלי - האינטגרל הכללי
    האינטגרל הכללי, אינטגרלים מידיים, מציאת פונקציה קדומה.

  • פרק 20 - חשבון אינטגרלי - האינטגרל המסוים וחישובי שטחים
    האינטגרל המסוים, חישובי שטחים יסודיים, שטח מתחת לציר איקס, חישובי שטחים בין שתי פונקציות, חישובי שטחים מורכבים, חישובי שטחים עם פרמטרים, חישובי שטחים כאשר נתונה הנגזרת, חישובי שטחים עם פונקציה רציונאלית, עם פונקצית שורש ועם פונקציות טריגונומטריות, חישובי שטחים שבין גרף הנגזרת והצירים

  • פרק 21 - חשבון אינטגרלי - פונקציה מעריכית, לוגריתמית וחזקה
    האינטגרל הכללי של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי, האינטגרל המסוים של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי.

  • פרק 22 - חשבון אינטגרלי - חישובי נפחים של גופים ובעיות קיצון עם אינטגרלים
    חישובי נפחים של גופים, בעיות קיצון עם אינטגרלים

  • פרק 23 - מבוא לאלגברה
    סדר פעולות חשבון עם מספרים מכוונים, הצבה בתבניות מספר, פעולות עם חזקות ושורשים, שבר פשוט, שבר עשרוני, אחוזים, חיבור וחיבור שברים, כפל וחילוק שברים, פירוקים, נוסחאות הכפל המקוצר, טרינום.

  • פרק 24 - גיאומטריה אנליטית - ההיפרבולה
    הגדרת ההיפרבולה, פרמטרים של היפרבולה, רדיוסים של ההיפרבולה, מיתר וקוטר בהיפרבולה, אסימפטוטות של היפרבולה.

  • פרק 25 - חשבון דיפרנציאלי - חילוק פולינומים ופתרון משוואות פולינומיאליות
    מעלה של פולינום, פולינום מחלק ופולינום מחולק, חילוק פולינומים, שארית חלוקה של פולינום בפולינום, פתרון משוואות פולינומיאליות, משפטים בפתרון משוואות פולינומיאליות.

  • פרק 26 - חשבון דיפרנציאלי - פונקצית הערך המוחלט
    הגדרת הערך המוחלט ופונקצית הערך המוחלט, סרטוט גרף של פונקצית הערך המוחלט, גזירה של פונקציה עם ערך מוחלט, חקירה של פונקציה עם ערך מוחלט.

  • פרק 27 - חקירת משוואה ממעלה ראשונה

  • פרק 28 - חקירת משוואה ממעלה שנייה

  • פרק 29 - חשבון דיפרנציאלי - פונקציות היפרבוליות
    פונקציות היפרבוליות: סינוס היפרבולי, קוסינוס היפרבולי, טנגנס היפרבולי, קוטנגנס היפרבולי, גזירה של פונקציות היפרבוליות, הפונקציות ההיפרבוליות ההפוכות: סינוס היפרבולי הפוך, קוסינוס היפרבולי הפוך, טנגנס היפרבולי הפוך, קוטנגנס היפרבולי הפוך. גזירה של פונקציות היפרבוליות הפוכות.

  • פרק 30 - נוסחאות וייטה
    נוסחאות וייטה, סימני שורשים של משוואה ריבועית, חקירת משוואה ריבועית עם נוסחאות וייטה, חקירת פונקציה ריבועית עם נוסחאות וייטה.

  • פרק 31 - חשבון דיפרנציאלי - פונקציות טריגונומטריות הפוכות

  • פרק 32 - חשבון דיפרנציאלי - הקשר שבין גרף הפונקציה וגרף הנגזרת
    קשר שבין גרף הפונקציה וגרף הנגזרת הראשונה והנגזרת השנייה.

    זמן: 1:54 שעות
  • פרק 33 - גבול של פונקציה
    טכניקות לחישוב גבול של פונקציה, הצבה, פירוק לגורמים, הכפלה בצמוד, שאיפה לאינסוף, פונקציה השואפת לאינסוף, כלל הסנדוויץ , הגבול של אוילר, גבול לפונקציה מפוצלת, גבול לפי הגדרה

  • פרק 34 - טורי טיילור - מקלורן
    סימן הסכימה, טור טיילור, טור מקלורן, תחום התכנסות של טור טיילור, שימושים של טורי טיילור - חישוב סכום של טור, חישוב גבולות, חישוב מקורבים בעזרת השארית של לייבניץ, חישובים מקורבים של אינטגרלים, חישובים מקורבים בעזרת נוסחת השארית של לגרנז'.

  • פרק 35 - אינטגרלים מיידיים

  • פרק 36 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''

  • פרק 37 - אינטגרלים בשיטת אינטגרציה בחלקים

  • פרק 38 - אינטגרלים בשיטת ההצבה

  • פרק 39 - אינטגרלים של פונקציות רציונליות

  • פרק 40 - אינטגרלים טריגונומטריים והצבות טריגונומטריות
    מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונומטרי על ידי הצבה, פתרון אינטגרל עם שורשים על ידי הצבה טריגונומטרית, חישוב שטחים בין פונקציות טריגונומטריות.

  • פרק 41 - האינטגרל המסוים, אינטגרביליות לפי רימן ולפי דארבו
    האינטגרל מסוים, הנוסחה היסודית של החדו"א, המשמעות הגיאומטרית של האינטגרל המסוים, כללי האינטגרל המסוים, האינטגרל המסוים ושיטות אינטגרציה, תכונת המונוטוניות של האינטגרל המסוים, אי שוויונות עם האינטגרל המסוים, סכום רימן, הסוגים השונים של סכומי רימן, אינטגרביליות לפי רימן, חישוב אינטגרל מסוים לפי ההגדרה של רימן, משפטים חשובים הקשורים לאינטגרביליות, אינטגרביליות לפי דארבו (חלוקה של קטע סגור, סכום דארבו עליון ותחתון, אינטגרל תחתון ואינטגרל עליון, האינטגרל המסוים ואינטגרביליות לפי דארבו, עידון של חלוקה).

  • פרק 42 - משוואות ליניאריות מסדר שני
    משוואה חסרה - שיטת הורדת סדר המשוואה, משוואה לינארית, הומוגנית, עם מקדמים קבועים, עקרון הסופרפוזיציה, שיטת השוואת מקדמים, שיטת וריאציית הפרמטרים, משוואת אוילר, שיטת דאלמבר - שיטת הפתרון השני, נוסחת אבל, הוורונסקיאן ושימושיו, משפט הקיום והיחידות למשוואה לינארית מסדר שני, השיטה האופרטורית.

  • פרק 43 - משוואות מסדר ראשון
    מהי משוואה דיפרנציאלית, משוואה פרידה (משוואה הניתנת להפרדת משתנים), משוואה הומוגנית, משוואה מהצורה ax+by+c)dx+(dx+ey+f)dy=0) , משוואה מדויקת, גורם אינטגרציה, משוואה לינארית (פתרון לפי נוסחה), משוואה לינארית (פתרון לפי וריאציית פרמטרים), משוואת ברנולי, משוואת ריקטי, משוואות הנפתרות על ידי הצבות שונות ומשונות, משפט הקיום והיחידות למשוואה מסדר ראשון על שם פיאנו ופיקארד, משפט הקיום והיחידות למשוואה לינארית מסדר ראשון, שיטת האטרציות של פיקארד (שיטת הקרובים העוקבים), משפט הקיום והיחידות בגרסת ליפשיץ, משפט הקיום והיחידות המורחב, פתרון גרפי בשיטת שדה כיוונים (שדה השיפועים), פתרון נומרי בשיטת אויילר, משוואה מסדר ראשון וממעלה גבוהה.

  • פרק 44 - משוואות ליניאריות מסדר n
    משוואה חסרה מסדר שלישי, משוואה לינארית הומוגנית עם מקדמים קבועים, שיטת השוואת מקדמים, שיטת וריאציית הפרמטרים, משוואת אוילר, הוורונסקיאן ושימושיו, השיטה האופרטורית.

  • פרק 45 - כלל השרשרת בפונקציות של מספר משתנים

  • פרק 46 - פונקציות סתומות - שימושים גיאומטריים
    גזירה סתומה מסדר ראשון ושני, גזירה סתומה של מערכת משוואות, משפט הפונקציה הסתומה - הפן התיאורטי, מישור משיק למשטח, ישר ניצב למשטח, ישר משיק לעקום, מישור נורמלי לעקום, ישר משיק ומישור נורמלי לעקום חיתוך של שני משטחים, מישור משיק וישר ניצב למשטח פרמטרי .

  • פרק 47 - נוסחת טיילור לפונקציה של שני משתנים והדיפרנציאל השלם
    נוסחת טיילור לפונקציה של שני משתנים, הדיפרנציאל השלם (נוסחת הקירוב הלינארי).

  • פרק 48 - קיצון ואוכף לפונקציה של שני משתנים

  • פרק 49 - קיצון של פונקציה רבת משתנים (רמה מתקדמת) - הריבועים הפחותים

  • פרק 50 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')

  • פרק 51 - קווים ותחומים במישור, משטחים וגופים במרחב
    בפרק זה נכיר את כל הקוים במישור (ישר, מעגל, אליפסה, פרבולה, היפרבולה) ואת התחומים החסומים בהם בהצגה אלגברית, פרמטרית ופולרית. בהמשך נכיר את המשטחים המפורסמים במרחב (מישור, ספירה, גליל אליפטי, חרוט אליפטי, היפרבולואיד חד יריעתי, היפרבולואיד דו יריעתי, פרבולואיד אליפטי, פרבולואיד היפרבולי) בהצגה אלגברית והצגה פרמטרית. לבסוף נתמקד בגופים במרחב בקואורדינטות קרטזיות, גליליות וכדוריות.

  • פרק 52 - פונקציות של מספר משתנים - מבוא, קווי גובה, משטחי רמה
    פונקציה של מספר משתנים, תחום הגדרה, קווי גובה, משטחי רמה.

  • פרק 53 - נגזרות חלקיות דיפרנציאבליות
    נגזרות חלקיות מסדר ראשון, נגזרות חלקיות מסדר שני, נגזרות חלקיות לפי ההגדרה, דיפרנציאביליות

  • פרק 54 - נגזרת מכוונת וגרדיאנט
    גרדינט, נגזרת מכוונת, משמעות גיאומטרית של נגזרת מכוונת וגרדינט, משפטים הקשורים לנגזרת מכוונת וגרדינט, נגזרת מכוונת לפי ההגדרה, ישר פרמטרי משיק למשטח.

  • פרק 55 - גבולות ורציפות של פונקציות של מספר משתנים
    טכניקות לחישוב גבול של פונקציה בשני משתנים, טכניקות להוכחת אי קיום גבול לפונקציה של שני משתנים, גבול לפי ההגדרה לפונקציה של שני משתנים. רציפות לפונקציה של שני משתנים, משפטי רציפות לפונקציה של שני משתנים (ויירשטראס וערך הביניים).