פרק 1 - אינטגרלים מיידיים
פרק 2 - אינטגרלים בשיטת ''הנגזרת כבר בפנים''
פרק 3 - אינטגרלים בשיטת אינטגרציה בחלקים
פרק 4 - אינטגרלים בשיטת ההצבה
פרק 5 - שימושי האינטגרל המסויים (שטח-אורך קשת)
▼
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.
פרק 6 - פונקציות בשני משתנים לכלכלנים - עקומות שוות ערך ונגזרות חלקיות
פרק 7 - כלל השרשרת בפונקציות של מספר משתנים
פרק 8 - פונקציות סתומות - שימושים גיאומטריים
▼
גזירה סתומה מסדר ראשון ושני, גזירה סתומה של מערכת משוואות, משפט הפונקציה הסתומה - הפן התיאורטי, מישור משיק למשטח, ישר ניצב למשטח, ישר משיק לעקום, מישור נורמלי לעקום, ישר משיק ומישור נורמלי לעקום חיתוך של שני משטחים, מישור משיק וישר ניצב למשטח פרמטרי .
פרק 9 - קיצון ואוכף לפונקציה של שני משתנים
פרק 10 - קיצון של פונקציה של שני משתנים תחת אילוץ (כופלי לגראנז')
פרק 11 - קיצון של פונקציה של שלושה משתנים תחת אילוצים
פרק 12 - פונקציות הומוגניות - משפט אוילר
▼
פונרציה הומוגנית, מעבר מנקודה לנקודה בפונקציה הומוגנית ובנגזרת של פונקציה הומוגנית, משפט אוילר
פרק 13 - נוסחת טיילור לפונקציה של שני משתנים והדיפרנציאל השלם
▼
נוסחת טיילור לפונקציה של שני משתנים, הדיפרנציאל השלם (נוסחת הקירוב הלינארי).
פרק 14 - מינימום ומקסימום מוחלטים לפונקציה
▼
הגדרת קיצון מקומי וקיצון מוחלט (גלובלי) לפונקציה. מציאת קיצון מוחלט בקטע סגור, מציאת קיצון מוחלט בקטע פתוח, הוכחת אי שוויונים.
פרק 15 - קיצון מוחלט של פונקציה בשני משתנים בקבוצה סגורה וחסומה
▼
מציאת מקסימום ומינימום מוחלטים/גלובליים לפונקציה של שני משתנים בקבוצה סגורה וחסומה כגון משולש, טרפז, עיגול וכו
פרק 16 - אינטגרלים של פונקציות רציונליות