אל תפספסו את ההצעה הכי משתלמת שלנו!!!
מנוי חופשי לכל הקורסים שלכם
בטח, ספרו לי עוד!
קורס קיץ במתמטיקה 4 יחידות
מחיר הקורס: ₪249
לרכישת הקורס
כולל:
118 שעות
תוכן הקורס
3 לחץ על העגלה להוספת התוכן המבוקש
  • פרק 1 - מבוא לאלגברה
    סדר פעולות חשבון עם מספרים מכוונים, הצבה בתבניות מספר, פעולות עם חזקות ושורשים, שבר פשוט, שבר עשרוני, אחוזים, חיבור וחיבור שברים, כפל וחילוק שברים, פירוקים, נוסחאות הכפל המקוצר, טרינום

  • פרק 2 - משוואות אלגבריות
    משוואה ממעלה ראשונה, מערכת שתי משוואות בשני נעלמים ממעלה ראשונה, משוואות עם אינסוף פתרונות ואף פתרון, משוואה ריבועית (משוואה ממעלה שנייה), משוואות ממעלה שלישית ומעלות גבוהות, משוואות דו ריבועיות, משוואות עם פרמטרים, משוואות עם שורשים, משוואות עם ערך מוחלט, מערכת שתי משוואות עם שני נעלמים ממעלה שנייה.

  • פרק 3 - אי שיוויונים אלגבריים
    אי שיוויוינים ממעלה ראשונה ושנייה, אי שיוויוינים ממעלה גבוהה (שלישית ויותר), אי שיוויוינים עם מנה, אי שיויונים כפולים, מערכת וגם, מערכת או, מציאת תחומי הגדרה, אי שיוויוינים עם ערך מוחלט

  • פרק 4 - גיאומטריה אנליטית - הישר
    מרחק בין נקודות, אמצע קטע, משוואת הישר, שיפוע של ישר, מציאת משוואת ישר לפי נקודה ושיפוע או שתי נקודות, שאלות מסכמות במשוואת ישר

  • פרק 5 - הפונקציה הריבועית וגרף הפרבולה
    הפונקציה הריבועית היסודי: y=x^2, הוספת קבוע לפונקציה ריבועית: y=x^2+c, הזזה אופקית של פונקציה ריבועית: y=(x-p)^2, הזזות אנכיות ואופקיות של פונקציה ריבועית: y=(x-p)^2+k, פונקציה ריבועית עם a כללי מהצורה: y=a(x-p)^2+k, הצגה סטנדרטית של פונקציה ריבועית, סרטוט גרף פונקציה ריבועית, מציאת נקודות חיתוך של פונקציה ריבועית, ייצוגים שונים של פונקציה ריבועית, חיתוך בין ישר לפרבולה, חיתוך בין שתי פרבולות.

  • פרק 6 - חוקי החזקות והשורשים
    חוקי חזקות, חוקי שורשים, כתיבת מדעית של מספרים

  • פרק 7 - משוואות ואי-שוויונים מעריכיים
    מהי משוואה מעריכית, כיצד לפתור משוואה מעריכית, מערכת משוואות מעריכיות, אי שוויונים מעריכיים

  • פרק 8 - חוקי הלוגריתמים, משוואות ואי-שווינים לוגריתמיים
    מהי משוואה לוגריתמית, כיצד לפתור משוואה לוגריתמית, משוואת לוגריתמיות הנפתרות ע"י הגדרת הלוגריתם, חוקי הלוגריתמים, משוואות הנפתרות ע"י שימוש בחוקי הלוגריתמים, משוואות הנפתרות ע"י הוצאת לוג משני אגפי המשוואה, מערכת משוואות לוגריתמיות, מערכת משוואות לוגריתמיות ומעריכיות, אי שוויונים לוגריתמים.

  • פרק 9 - טריגונומטריה במשולש ישר זווית
    ארבעת הפונקציות הטריגונומטריות: סינוס, קוסינוס, טנגנס וקוטנגנס. שאלות במשולשים הנפתרות ע"י שימוש בטריגונומטריה

  • פרק 10 - זהויות טריגונומטריות
    זהויות יסוד, ערכי הפונקציות הטריגונומטריות של זוויות מיוחדות, הגדרת מעגל היחידה, זהויות של מעגל היחידה הטריגונומטרי, זהויות עבור זוויות הגדולות מ-360 מעלות, זהויות של סכום והפרש זוויות, זהויות של זווית כפולה, זהויות של סכום והפרש פונקציות.

  • פרק 11 - משוואות טריגונומטריות
    מהי משוואה טריגונומטרית, צורת פתרון של סינוס, של קוסינוס ושל טנגנס, פתרונות כלליים של משוואות טריגונומטריות, משוואות הנפתרות ע"י שימוש בזהויות יסוד, משוואות הנפתרות ע"י חלוקה בקוסינוס, משוואות הנפתרות ע"י טכניקה אלגברית, משוואות עם פתרון בתחום נתון, משוואות עם זוויות ברדיאנים.

  • פרק 12 - חשבון דיפרנציאלי - נגזרות ומשיקים
    נגזרות יסודיות, מציאת שיפוע משיק לגרף פונקציה, מציאת משוואת משיק לגרף פונקציה, שאלות שונות עם משיקים.

  • פרק 13 - חשבון דיפרנציאלי - חקירת פונקציות
    נקודות קיצון, חקירת פונקצית פולינום, תחום הגדרה של פונקצית מנה, תחום הגדרה של פונקצית שורש, אסימפטוטות של פונקציות מנה ושורש (אסימפטוטה אנכית ואופקית), חקירת פונקצית מנה ושורש, חקירת פונקציה עם פרמטר, פונקציה זוגית ואי-זוגית.

  • פרק 14 - חשבון דיפרנציאלי של פונקציות טריגונומטריות
    נגזרות טריגונומטריות, זוגיות של פונקציה, מחזוריות של פונקציה, שאלות עם גזירה של פונקציה, שאלות עם משיקים בפונקציות טריגונומטריות, מציאת תחום הגדרה של פונקציות טריגונומטריות, מציאת נקודות קיצון של פונקציות טריגונומטריות, אסימפטוטות עם פונקציות טריגונומטריות, חקירת פונקציה טריגונומטרית.

  • פרק 15 - חשבון אינטגרלי של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות וחזקה
    האינטגרל הכללי של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי, האינטגרל המסוים של פונקציות טריגונומטריות, מעריכיות, לוגריתמיות ופונקציות חזקה עם מעריך רציונאלי.

  • פרק 16 - חשבון דיפרנציאלי - בעיות קיצון
    בעיות קיצון עם מספרים, בעיות קיצון בהנדסת המישור, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת המרחב.