פרק 1 - חזרה על מדר - משוואות מסדר ראשון
▼
מהי משוואה דיפרנציאלית, משוואה פרידה (משוואה הניתנת להפרדת משתנים), משוואה הומוגנית, משוואה מהצורה ax+by+c)dx+(dx+ey+f)dy=0) , משוואה מדויקת, גורם אינטגרציה, משוואה לינארית (פתרון לפי נוסחה), משוואה לינארית (פתרון לפי וריאציית פרמטרים), משוואת ברנולי, משוואת ריקטי, משוואות הנפתרות על ידי הצבות שונות ומשונות, משפט הקיום והיחידות למשוואה מסדר ראשון על שם פיאנו ופיקארד, משפט הקיום והיחידות למשוואה לינארית מסדר ראשון, שיטת האטרציות של פיקארד (שיטת הקרובים העוקבים), משפט הקיום והיחידות בגרסת ליפשיץ, משפט הקיום והיחידות המורחב, פתרון גרפי בשיטת שדה כיוונים (שדה השיפועים), פתרון נומרי בשיטת אויילר, משוואה מסדר ראשון וממעלה גבוהה.
פרק 2 - חזרה על מדר - משוואות ליניאריות מסדר שני
▼
משוואה חסרה - שיטת הורדת סדר המשוואה, משוואה לינארית, הומוגנית, עם מקדמים קבועים, עקרון הסופרפוזיציה, שיטת השוואת מקדמים, שיטת וריאציית הפרמטרים, משוואת אוילר, שיטת דאלמבר - שיטת הפתרון השני, נוסחת אבל, הוורונסקיאן ושימושיו, משפט הקיום והיחידות למשוואה לינארית מסדר שני, השיטה האופרטורית.
פרק 3 - מיון משוואות דיפרנציאליות חלקיות מסדר שני
▼
משוואות היפרבוליות, משוואות פרבוליות, משוואות אליפטיות
פרק 4 - בעיות שטורם ליוביל
▼
בעיות שטורם ליוביל, פיתוח פונקציה לטור פונקציות עצמיות של בעית שטורם ליוביל
פרק 5 - טורי פורייה
▼
טורי פורייה ממשיים ומרוכבים בקטעים שונים. פונקציות זוגיות ואי זוגיות, המשכה זוגית ואי-זוגית. משפט דיריכלה, התכנסות במידה שווה, שיוויון פרסבל, התכנסות בנורמה. הלמה של רימן לבג, גזירה ואינטגרציה של טורי פורייה, משפט הקונבולוציה.
פרק 6 - משוואת החום
▼
משוואת החום בקטע סופי, הפרדת משתנים
פרק 7 - התמרת לפלס
▼
התמרת לפלס, התמרת לפלס של פונקציה מחזורית, של פונקציה מפוצלת, של פונקצית מדרגה ושל פונקצית דלתא, התמרת לפלס ההפוכה, משפט הקונוולוציה, פתרון מדר בעזרת התמרת לפלס בשילוב כל הפונקציות לעיל.
פרק 8 - משוואת לפלס
▼
משוואת לפלס בעיגול, משוואת לפלס במלבן
סטודנטים יקרים, שימו לב שהקורס מכסה את החומר הנלמד באופן חלקי בלבד.